В россии собрали первый в мире ядерный космический двигатель. Как работает ядерный двигатель

Осторожно много букв.

Летный образец космического аппарата с ядерной энергодвигательной установкой (ЯЭДУ) в России планируется создать к 2025 году. Соответствующие работы заложены в проекте Федеральной космической программы на 2016–2025 годы (ФКП-25), направленной Роскосмосом на согласование в министерства.

Ядерные системы электроэнергии считают основными перспективными источниками энергии в космосе при планировании масштабных межпланетных экспедиций. Обеспечить мегаваттные мощности в космосе в перспективе позволит ЯЭДУ, созданием которой сейчас занимаются предприятия «Росатома».

Все работы по созданию ЯЭДУ идут в соответствии с запланированными сроками. Мы можем с большой долей уверенности говорить, что работы будут сданы в срок, предусмотренный целевой программой, - говорит руководитель проекта департамента коммуникаций госкорпорации «Росатом» Андрей Иванов.

За последнее время в рамках проекта пройдено два важных этапа: создана уникальная конструкция тепловыделяющего элемента, обеспечивающая работоспособность в условиях высоких температур, больших градиентов температур, высокодозного облучения. Также успешно завершены технологические испытания корпуса реактора будущего космического энергоблока. В рамках этих испытаний корпус подвергали избыточному давлению и проводили 3D-измерения в зонах основного металла, кольцевого сварного соединения и конического перехода.

Принцип действия. История создания.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США. С начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Работы по созданию ядерных двигателей для космических аппаратов активно велись в СССР и США в прошлом веке: американцы закрыли проект в 1994 году, СССР - в 1988-м. Закрытию работ во многом способствовала чернобыльская катастрофа, которая негативно настроила общественное мнение в отношении использования ядерной энергии. К тому же испытания ядерных установок в космосе не всегда проходили штатно: в 1978 году советский спутник «Космос-954» вошел в атмосферу и развалился, разбросав тысячи радиоактивных осколков на территории в 100 тыс. кв. км в северо-западных районах Канады. Советский Союз выплатил Канаде денежную компенсацию в объеме более $10 млн.

В мае 1988 года две организации - Федерация американских ученых и Комитет советских ученых за мир против ядерной угрозы - сделали совместное предложение о запрещении использования ядерной энергии в космосе. Формальных последствий то предложение не получило, однако с тех пор ни одна страна не производила запусков космических аппаратов с ядерными энергетическими установками на борту.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики - высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении.

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Реактор.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.
В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их - монокристаллический сплав тугоплавких металлов на основе молибдена.

Этому топливу придется работать при очень высоких температурах. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию - нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

Холодильник.

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе? Единственная возможность - охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет. Уникальность проекта в использовании специального теплоносителя - гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия.

Двигатель.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом "вытягиваются" ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации "Росатом" на создание самого реактора. Другие 3,955 млрд - ФГУП "Центр Келдыша" на создание ядерной - энергодвигательной установки. Еще 5,8 млрд рублей - для РКК "Энергия", где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета.

Не секрет, что работы по созданию ядерных ракетных двигателей были начаты в США и в СССР еще в 60-х годах прошлого века. Как далеко они продвинулись? И с какими проблемами пришлось столкнуться на этом пути?

Анатолий Коротеев: Действительно, работы по использованию ядерной энергии в космосе были начаты и активно велись у нас и в США в 1960-70-е годы.

Первоначально была поставлена задача создать ракетные двигатели, которые вместо химической энергии сгорания горючего и окислителя использовали бы нагрев водорода до температуры около 3000 градусов. Но оказалось, что такой прямой путь все-таки неэффективен. Мы на короткое время получаем большие тяги, но при этом выбрасываем струю, которая в случае нештатной работы реактора может оказаться радиоактивно зараженной.

Определенный опыт был накоплен, но ни нам, ни американцам не удалось тогда создать надежных двигателей. Они работали, но мало, потому что нагреть водород до 3000 градусов в ядерном реакторе - серьезная задача. А кроме того, возникали проблемы экологического свойства во время наземных испытаний таких двигателей, поскольку радиоактивные струи выбрасывались в атмосферу. Уже не секрет, что подобные работы проводились на специально подготовленном для ядерных испытаний Семипалатинском полигоне, который остался в Казахстане.

То есть критичными оказались два параметра - запредельная температура и выбросы радиации?

Анатолий Коротеев: В общем, да. В силу этих и некоторых других причин работы у нас и в США были прекращены или приостановлены - оценивать можно по-разному. И возобновить их таким, я бы сказал, лобовым образом, чтобы сделать ядерный двигатель со всеми уже названными недостатками, нам показалось неразумным. Мы предложили совершенно иной подход. От старого он отличается тем же, чем отличается гибридный автомобиль от обычного. В обычном авто двигатель крутит колеса, а в гибридных - от двигателя вырабатывается электроэнергия, и уже это электричество крутит колеса. То есть создается некая промежуточная электростанция.

Вот и мы предложили схему, в которой космический реактор не нагревает струю, выбрасываемую из него, а вырабатывает электричество. Горячий газ от реактора крутит турбину, турбина крутит электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Генератор же вырабатывает электричество для плазменного двигателя с удельной тягой в 20 раз выше, чем у химических аналогов.

Мудреная схема. По существу, это мини-АЭС в космосе. И в чем ее преимущества перед прямоточным ядерным двигателем?

Анатолий Коротеев: Главное - выходящая из нового двигателя струя не будет радиоактивной, поскольку через реактор проходит совершенно другое рабочее тело, которое содержится в замкнутом контуре.

Кроме того, нам не надо при этой схеме нагревать до запредельных значений водород: в реакторе циркулирует инертное рабочее тело, которое нагревается до 1500 градусов. Мы серьезно упрощаем себе задачу. И в итоге поднимем удельную тягу не в два раза, а в 20 раз по сравнению с химическими двигателями.

Немаловажно и другое: отпадает потребность в сложных натурных испытаниях, для которых нужна инфраструктура бывшего Семипалатинского полигона, в частности, та стендовая база, что осталась в городе Курчатове.

В нашем случае все необходимые испытания можно провести на территории России, не втягиваясь в длинные международные переговоры об использовании ядерной энергии за пределами своего государства.

Ведутся ли сейчас подобные работы в других странах?

Анатолий Коротеев: У меня была встреча с заместителем руководителя НАСА, мы обсуждали вопросы, связанные с возвращением к работам по ядерной энергии в космосе, и он заявил, что американцы проявляют к этому большой интерес.

Вполне возможно, что и Китай может ответить активными действиями со своей стороны, поэтому работать надо быстро. И не только ради того, чтобы опередить кого-то на полшага.

Работать надо быстро в первую очередь для того, чтобы в формирующейся международной кооперации, а де-факто она формируется, мы выглядели достойно.

Я не исключаю, что уже в ближайшей перспективе может быть инициирована международная программа по ядерной космической энергоустановке наподобие реализуемой сейчас программы по управляемому термоядерному синтезу.

Нашёл интересную статью. Вообще атомные космические корабли меня всегда интересовали. Это будущее космонавтики. Обширные работы по этой тематике велись и в СССР. В статье как раз про них.

В космос на атомной тяге. Мечты и реальность.

доктор физико-математических наук Ю. Я. Стависский

В 1950 году я защитил диплом инженера-физика в Московском механическом институте (ММИ) Министерства боеприпасов. Пятью годами раньше, в 1945-м, там был образован инженерно-физический факультет, готовивший специалистов для новой отрасли, в задачи которой входило в основном производство ядерного боеприпаса. Факультет не имел себе равных. Наряду с фундаментальной физикой в объёме университетских курсов (методы математической физики, теория относительности, квантовая механика, электродинамика, статистическая физика и другие) нам преподавали полный набор инженерных дисциплин: химию, металловедение, сопротивление материалов, теорию механизмов и машин и пр. Созданный выдающимся советским физиком Александром Ильичём Лейпунским инженерно-физический факультет ММИ вырос со временем в Московский инженерно-физический институт (МИФИ). Другой инженерно-физический факультет, также влившийся впоследствии в МИФИ, был сформирован в Московском энергетическом институте (МЭИ), но если в ММИ основной упор делался на фундаментальную физику, то в Энергетическом — на тепло- и электрофизику.

Квантовую механику мы изучали по книге Дмитрия Ивановича Блохинцева. Каково же было моё удивление, когда при распределении меня направили к нему на работу. Я, заядлый экспериментатор (в детстве разобрал все часы в доме), и вдруг попадаю к известному теоретику. Меня охватила лёгкая паника, но по прибытии на место — „Объект В“ МВД СССР в Обнинске — сразу понял, что волновался напрасно.

К этому времени основная тематика „Объекта В“, во главе которого до июня 1950 года фактически стоял А.И. Лейпунский, уже сформировалась. Здесь создавали реакторы с расширенным воспроизводством ядерного горючего — „быстрые бридеры“. На посту директора Блохинцев инициировал развитие нового направления — создание двигателей на атомной тяге для космических полётов. Овладение космосом было давней мечтой Дмитрия Ивановича, ещё в юности он переписывался и встречался с К.Э. Циолковским. Я думаю, что понимание гигантских возможностей ядерной энергии, по теплотворной способности в миллионы раз превышающей лучшие химические топлива, и определило жизненный путь Д.И. Блохинцева.
„Лицом к лицу лица не увидать“… В те годы мы многого не понимали. Только сейчас, когда наконец-то появилась возможность сопоставить дела и судьбы выдающихся учёных Физико-энергетического института (ФЭИ) — бывшего „Объекта В“, переименованного 31 декабря 1966 года — складывается верное, как мне кажется, понимание идей, двигавших ими в то время. При всём многообразии дел, которыми приходилось заниматься институту, можно выделить приоритетные научные направления, оказавшиеся в сфере интересов его ведущих физиков.

Главный интерес АИЛа (так в институте за глаза называли Александра Ильича Лейпунского) — развитие глобальной энергетики на основе быстрых реакторов-бридеров (ядерных реакторов, не имеющих ограничений в ресурсах ядерного горючего). Трудно переоценить значение этой поистине „космической“ проблемы, которой он посвятил последние четверть века своей жизни. Немало сил Лейпунский потратил и на оборону страны, в частности на создание атомных двигателей для подводных лодок и тяжелых самолётов.

Интересы Д.И. Блохинцева (за ним закрепилось прозвище „Д. И.“) были направлены на решение проблемы использования ядерной энергии для космических полётов. К сожалению, в конце 1950-х годов он был вынужден оставить эту работу и возглавить создание международного научного центра — Объединённого института ядерных исследований в Дубне. Там он занимался импульсными быстрыми реакторами — ИБР. Это стало последним большим делом его жизни.

Одна цель — одна команда

Д.И. Блохинцев, преподававший в конце 1940-х в МГУ, приметил там, а затем пригласил на работу в Обнинск молодого физика Игоря Бондаренко, который буквально бредил космическими кораблями на атомной тяге. Первым его научным руководителем был А.И. Лейпунский, и Игорь, естественно, занимался его тематикой — быстрыми бридерами.

При Д.И. Блохинцеве вокруг Бондаренко сформировалась группа учёных, которые объединились, чтобы решить проблемы использования атомной энергии в космосе. Кроме Игоря Ильича Бондаренко в группу входили: Виктор Яковлевич Пупко, Эдвин Александрович Стумбур и автор этих строк. Главным идеологом был Игорь. Эдвин проводил экспериментальные исследования наземных моделей ядерных реакторов космических установок. Я занимался в основном ракетными двигателями „малой тяги“ (тяга в них создаётся своеобразным ускорителем — „ионным движителем“, который питается энергией от космической атомной электростанции). Мы исследовали процессы,
протекающие в ионных движителях, на наземных стендах.

На Викторе Пупко (в будущем
он стал начальником отделения космической техники ФЭИ) лежала большая организационная работа. Игорь Ильич Бондаренко был выдающимся физиком. Он тонко чувствовал эксперимент, ставил простые, изящные и весьма эффективные опыты. Я думаю, как ни один экспериментатор, да, пожалуй, и немногие теоретики, „чувствовал“ фундаментальную физику. Всегда отзывчивый, открытый и доброжелательный, Игорь был поистине душой института. До сих пор ФЭИ живёт его идеями. Бондаренко прожил неоправданно короткую жизнь. В 1964-м, в возрасте 38 лет, он трагически погиб из-за врачебной ошибки. Как будто Бог, увидев, как много человек сделал, решил, что это уже чересчур и скомандовал: „Хватит“.

Нельзя не вспомнить ещё одну уникальную личность — Владимира Александровича Малыха, технолога „от Бога“, современного лесковского Левшу. Если „продукцией“ упомянутых выше учёных были в основном идеи и расчётные оценки их реальности, то работы Малыха всегда имели выход „в металле“. Его технологический сектор, насчитывавший во времена расцвета ФЭИ более двух тысяч сотрудников, мог сделать, без преувеличения, всё. Причём ключевую роль всегда играл он сам.

В.А. Малых начинал лаборантом в НИИ ядерной физики МГУ, имея за душой три курса физфака, — доучиться не дала война. В конце 1940-х годов ему удалось создать технологию изготовления технической керамики на основе окиси бериллия — материала уникального, диэлектрика с высокой теплопроводностью. До Малыха многие безуспешно бились над этой проблемой. А топливный элемент на основе серийной нержавеющей стали и природного урана, разработанный им для первой атомной электростанции, — чудо по тем да и по нынешнем временам. Или созданный Малыхом термоэмиссионный топливный элемент реактора-электрогенератора для питания космических аппаратов — „гирлянда“. До сих пор в этой области не появилось ничего лучшего. Творения Малыха были не демонстрационными игрушками, а элементами ядерной техники. Они работали месяцы и годы. Владимир Александрович стал доктором технических наук, лауреатом Ленинской премии, Героем Социалистического Труда. В 1964 году он трагически погиб от последствий военной контузии.

Шаг за шагом

С.П. Королёв и Д.И. Блохинцев с давних пор вынашивали мечту о полёте человека в космос. Между ними установились тесные рабочие связи. Но в начале 1950-х годов, в разгар „холодной войны“, средств не жалели только на военные цели. Ракетная техника рассматривалась лишь как носитель ядерных зарядов, а о спутниках и не помышляли. Между тем Бондаренко, зная о последних достижениях ракетчиков, настойчиво выступал за создание искусственного спутника Земли. Впоследствии об этом никто и не вспомнил.

Любопытна история создания ракеты, поднявшей в космос первого космонавта планеты — Юрия Гагарина. Связана она с именем Андрея Дмитриевича Сахарова. В конце 1940-х годов он разработал комбинированный делительно-термоядерный заряд — „слойку“, видимо, независимо от „отца водородной бомбы“ Эдварда Теллера, который предложил аналогичное изделие под названием „будильник“. Однако вскоре Теллер понял, что ядерный заряд такой схемы будет иметь „ограниченную“ мощность, не более ~ 500 килотонн толового эквивалента. Для „абсолютного“ оружия этого мало, поэтому „будильник“ был заброшен. В Союзе же в 1953 году взорвали сахаровскую слойку РДС-6с.

После успешных испытаний и избрания Сахарова в академики тогдашний глава Минсредмаша В.А. Малышев пригласил его к себе и поставил задачу определить параметры бомбы следующего поколения. Андрей Дмитриевич оценил (без детальной проработки) вес нового, значительно более мощного заряда. Докладная Сахарова легла в основу постановления ЦК КПСС и Совета Министров СССР, которое обязало С.П. Королёва разработать под этот заряд баллистическую ракету-носитель. Именно такая ракета Р-7 под названием „Восток“ и вывела на орбиту искусственный спутник Земли в 1957-м и космический корабль с Юрием Гагариным в 1961-м. Использовать её как носитель тяжёлого ядерного заряда тогда уже не планировали, поскольку развитие термоядерного оружия пошло иным путём.

На начальном этапе космической ядерной программы ФЭИ совместно с КБ В.Н. Челомея разрабатывал крылатую атомную ракету. Это направление развивалось недолго и завершилось расчётами и испытанием элементов двигателя, созданного в отделении В.А. Малыха. По сути, речь шла о низколетящем беспилотном самолете с прямоточным ядерным двигателем и ядерной боеголовкой (своего рода ядерный аналог „жужжащего клопа“ — немецкой V-1). Система стартовала с помощью обычных ракетных ускорителей. После выхода на заданную скорость тяга создавалась атмосферным воздухом, нагреваемым за счёт цепной реакции деления окиси бериллия, пропитанной обогащённым ураном.

Вообще говоря, возможность выполнения ракетой той или иной задачи космонавтики определяется скоростью, которую она приобретает после использования всего запаса рабочего тела (топлива и окислителя). Её вычисляют по формуле Циолковского: V = c×lnMн/ Мк, где с — скорость истечения рабочего тела, а Мн и Мк — начальная и конечная масса ракеты. В обычных химических ракетах скорость истечения определяется температурой в камере сгорания, видом топлива и окислителя и молекулярным весом продуктов сгорания. Например, американцы для высадки астронавтов на Луну использовали в спускаемом аппарате в качестве топлива водород. Продукт его сгорания — вода, чей молекулярный вес сравнительно низок, и скорость истечения в 1,3 раза выше, чем при сжигании керосина. Этого достаточно, чтобы спускаемый аппарат с космонавтами достиг поверхности Луны и затем вернул их на орбиту её искусственного спутника. У Королёва работы с водородным топливом были приостановлены из-за аварии с человеческими жертвами. Создать лунный спускаемый аппарат для человека мы не успели.

Один из путей существенного повышения скорости истечения — создание ядерных термических ракет. У нас это были баллистические атомные ракеты (БАР) с радиусом действия несколько тысяч километров (совместный проект ОКБ-1 и ФЭИ), у американцев — аналогичные системы типа „Киви“. Двигатели испытывались на полигонах под Семипалатинском и в Неваде. Принцип их действия следующий: водород нагревается в ядерном реакторе до высоких температур, переходит в атомарное состояние и уже в таком виде истекает из ракеты. Скорость истечения при этом повышается более чем вчетверо по сравнению с химической водородной ракетой. Вопрос состоял в том, чтобы выяснить, до какой температуры можно нагреть водород в реакторе с твёрдыми топливными элементами. Расчёты давали около 3000°К.

В НИИ-1, научным руководителем которого был Мстислав Всеволодович Келдыш (тогда президент Академии наук СССР), отдел В.М. Иевлева с участием ФЭИ занимался совсем уж фантастической схемой — газофазным реактором, в котором цепная реакция протекает в газовой смеси урана и водорода. Из такого реактора водород истекает ещё раз в десять быстрее, чем из твёрдотопливного, уран же сепарируется и остаётся в активной зоне. Одна из идей предполагала использование центробежной сепарации, когда горячая газовая смесь урана и водорода „закручивается“ поступающим холодным водородом, в результате чего уран и водород разделяются, как в центрифуге. Иевлев пытался, по сути дела, прямо воспроизвести процессы в камере сгорания химической ракеты, используя в качестве источника энергии не теплоту сгорания топлива, а цепную реакцию деления. Это открывало путь к полному использованию энергоёмкости атомных ядер. Но вопрос о возможности истечения из реактора чистого водорода (без урана) так и остался нерешённым, не говоря уже о технических проблемах, связанных с удержанием высокотемпературных газовых смесей при давлениях в сотни атмосфер.

Работы ФЭИ по баллистическим атомным ракетам завершились в 1969-1970 годах „огневыми испытаниями“ на семипалатинском полигоне прототипа ядерного ракетного двигателя с твёрдыми топливными элементами. Его создавал ФЭИ в кооперации с воронежским КБ А.Д. Конопатова, московским НИИ-1 и рядом других технологических групп. Основу двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твёрдого раствора карбида урана и карбида циркония. Температура водорода достигала 3000°К при мощности реактора ~ 170 МВт.

Атомные ракеты малой тяги

До сих пор речь шла о ракетах с тягой, превышающей их вес, которые могли бы стартовать с поверхности Земли. В таких системах увеличение скорости истечения позволяет снизить запас рабочего тела, повысить полезную нагрузку и отказаться от многоступенчатости. Однако есть пути достижения практически неограниченных скоростей истечения, например ускорение вещества электромагнитными полями. Я занимался этим направлением в тесном контакте с Игорем Бондаренко почти 15 лет.

Ускорение ракеты с электрореактивным двигателем (ЭРД) определяется отношением удельной мощности установленной на них космической атомной электростанции (КАЭС) к скорости истечения. В обозримом будущем удельные мощности КАЭС, судя по всему, не превысят 1 кВт/кг. При этом возможно создание ракет с малой тягой, в десятки и сотни раз меньшей веса ракеты, и с очень малым расходом рабочего тела. Такая ракета может стартовать только с орбиты искусственного спутника Земли и, медленно ускоряясь, достигать больших скоростей.

Для полётов в пределах Солнечной системы нужны ракеты со скоростью истечения 50-500 км/с, а для полётов к звёздам — выходящие за пределы нашего воображения „фотонные ракеты“ со скоростью истечения, равной скорости света. Чтобы осуществить сколько-нибудь разумный по времени дальний космический полёт, необходимы невообразимые удельные мощности энергетических установок. Пока нельзя даже представить, на каких физических процессах они могут быть основаны.

Проведенные расчёты показали, что во время Великого противостояния, когда Земля и Марс находятся ближе всего друг к другу, можно за один год осуществить полёт ядерного космического корабля с экипажем к Марсу и возвратить его на орбиту искусственного спутника Земли. Полный вес такого корабля — около 5 т (включая запас рабочего тела — цезия, равный 1,6 т). Он определяется в основном массой КАЭС мощностью 5 МВт, а реактивная тяга — двухмегаваттным пучком ионов цезия с энергией 7 килоэлектронвольт *. Корабль стартует с орбиты искусственного спутника Земли, выходит на орбиту спутника Марса, а спускаться на его поверхность придётся уже на аппарате с водородным химическим двигателем, подобным американскому лунному.

Этому направлению, основанному на технических решениях, возможных уже сегодня, был посвящён большой цикл работ ФЭИ.

Ионные движители

В те годы обсуждались пути создания различных электрореактивных движителей для космических аппаратов, таких, как „плазменные пушки“, электростатические ускорители „пыли“ или капель жидкости. Однако ни одна из идей не имела под собой чёткой физической основы. Находкой оказалась поверхностная ионизация цезия.

Ещё в 20-е годы прошлого века американский физик Ирвинг Лэнгмюр открыл поверхностную ионизацию щелочных металлов. При испарении атома цезия с поверхности металла (в нашем случае — вольфрама), у которого работа выхода электронов больше потенциала ионизации цезия, он практически в 100% случаев теряет слабо связанный электрон и оказывается однократно заряженным ионом. Таким образом, поверхностная ионизация цезия на вольфраме и есть тот физический процесс, который позволяет создать ионный движитель с почти 100-процентным использованием рабочего тела и с энергетическим КПД, близким к единице.

Большую роль в создании моделей ионного движителя такой схемы сыграл наш коллега Сталь Яковлевич Лебедев. Своим железным упорством и настойчивостью он преодолевал все преграды. В результате удалось воспроизвести в металле плоскую трёхэлектродную схему ионного движителя. Первый электрод — пластина вольфрама размером примерно 10×10 см с потенциалом +7 кВ, второй — сетка из вольфрама с потенциалом -3 кВ, третий — сетка из торированного вольфрама с нулевым потенциалом. „Молекулярная пушка“ давала пучок паров цезия, который сквозь все сетки попадал на поверхность вольфрамовой пластины. Уравновешенная и откалиброванная металлическая пластина, так называемые весы, служила для измерения „силы“, т. е. тяги ионного пучка.

Ускоряющее напряжение до первой сетки разгоняет ионы цезия до 10 000 эВ, тормозящее напряжение до второй замедляет их до 7000 эВ. Это та энергия, с которой ионы должны покидать движитель, что соответствует скорости истечения 100 км/с. Но пучок ионов, ограниченный объёмным зарядом, не может „выйти в открытый космос“. Объёмный заряд ионов необходимо скомпенсировать электронами, чтобы образовалась квазинейтральная плазма, которая беспрепятственно распространяется в пространстве и создаёт реактивную тягу. Источником электронов для компенсации объёмного заряда ионного пучка служит нагреваемая током третья сетка (катод). Вторая, „запирающая“ сетка не даёт электронам попасть с катода на вольфрамовую пластину.

Первый опыт с моделью ионного движителя положил начало более чем десятилетним работам. Одна из последних моделей — с пористым вольфрамовым эмиттером, созданная в 1965 году, давала „тягу“ около 20 г при токе ионного пучка 20 А, имела коэффициент использования энергии около 90% и вещества — 95%.

Прямое преобразование ядерного тепла в электричество

Пути прямого преобразования энергии ядерного деления в электрическую пока не найдены. Мы ещё не можем обойтись без промежуточного звена — тепловой машины. Поскольку её КПД всегда меньше единицы, „отработанное“ тепло нужно куда-то девать. На земле, в воде и в воздухе с этим проблем нет. В космосе же существует только один путь — тепловое излучение. Таким образом, КАЭС не может обойтись без „холодильника-излучателя“. Плотность же излучения пропорциональна четвёртой степени абсолютной температуры, поэтому температура холодильника-излучателя должна быть как можно более высокой. Тогда удастся сократить площадь излучающей поверхности и соответственно массу энергетической установки. У нас появилась идея использовать „прямое“ преобразование ядерного тепла в электричество, без турбины и генератора, что казалось более надёжным при длительной работе в области высоких температур.

Из литературы мы знали о работах А.Ф. Иоффе — основателя советской школы технической физики, пионера в исследовании полупроводников в СССР. Мало кто теперь помнит о разработанных им источниках тока, применявшихся в годы Великой Отечественной войны. Тогда не один партизанский отряд имел связь с Большой землёй благодаря „керосиновым“ ТЭГам — термоэлектрогенераторам Иоффе. „Венец“ из ТЭГов (он представлял собой набор полупроводниковых элементов) надевался на керосиновую лампу, а его провода подсоединялись к радиоаппаратуре. „Горячие“ концы элементов нагревались пламенем керосиновой лампы, „холодные“ — остывали на воздухе. Поток тепла, проходя через полупроводник, порождал электродвижущую силу, которой хватало для сеанса связи, а в промежутках между ними ТЭГ заряжал аккумулятор. Когда через десять лет после Победы мы побывали на московском заводе ТЭГов, оказалось, что они ещё находят сбыт. У многих деревенских жителей были тогда экономичные радиоприемники „Родина“ на лампах прямого накала, работающие от батареи. Вместо них зачастую использовали ТЭГи.

Беда керосинового ТЭГа — его низкий КПД (всего около 3,5%) и невысокая предельная температура (350°К). Но простота и надёжность этих приборов привлекали разработчиков. Так, полупроводниковые преобразователи, разработанные группой И.Г. Гвердцители в Сухумском физико-техническом институте, нашли применение в космических установках типа „Бук“.

В свое время А.Ф. Иоффе предложил ещё один термоэмиссионный преобразователь — диод в вакууме. Принцип его действия следующий: нагретый катод испускает электроны, часть их, преодолевающая потенциал анода, совершает работу. От этого прибора ожидали значительно большего КПД (20-25%) при рабочей температуре выше 1000°К. Кроме того, в отличие от полупроводника вакуумный диод не боится нейтронного излучения, и его можно совместить с ядерным реактором. Однако оказалось, что осуществить идею „вакуумного“ преобразователя Иоффе невозможно. Как и в ионном движителе, в вакуумном преобразователе нужно избавиться от объёмного заряда, но на этот раз не ионов, а электронов. А.Ф. Иоффе предполагал использовать в вакуумном преобразователе микронные зазоры между катодом и анодом, что в условиях высоких температур и термических деформаций практически невозможно. Вот тут-то и пригодился цезий: один ион цезия, полученный за счёт поверхностной ионизации на катоде, компенсирует объёмный заряд около 500 электронов! По сути дела, цезиевый преобразователь — это „обращённый“ ионный движитель. Физические процессы в них близки.

«Гирлянды» В.А. Малыха

Одним из результатов работ ФЭИ над термоэмиссионными преобразователями были создание В.А. Малыхом и серийный выпуск в его отделении тепловыделяющих элементов из последовательно соединённых термоэмиссионных преобразователей — „гирлянд“ для реактора „Топаз“. Они давали до 30 В — раз в сто больше, чем одноэлементные преобразователи, созданные „конкурирующими организациями“ — ленинградской группой М.Б. Барабаша и позднее — Институтом атомной энергии. Это позволяло „снимать“ с реактора в десятки и сотни раз большую мощность. Однако надёжность системы, напичканной тысячами термоэмиссионных элементов, вызывала опасения. В то же время паро- и газотурбинные установки работали без сбоев, поэтому мы обратили внимание и на „машинное“ преобразование ядерного тепла в электричество.

Вся трудность заключалась в ресурсе, ведь в дальних космических полётах турбогенераторы должны работать год, два, а то и несколько лет. Чтобы уменьшить износ, „обороты“ (скорость вращения турбины) нужно сделать по возможности более низкими. С другой стороны, турбина работает эффективно, если скорость молекул газа или пара близка к скорости её лопаток. Поэтому сначала мы рассматривали применение самого тяжёлого — ртутного пара. Но нас испугала интенсивная радиационно-стимулированная коррозия железа и нержавеющей стали, которая возникала в охлаждаемом ртутью ядерном реакторе. За две недели коррозия „съела“ тепловыделяющие элементы опытного быстрого реактора „Клементина“ в Аргонской лаборатории (США, 1949 год) и реактора БР-2 в ФЭИ (СССР, Обнинск, 1956 год).

Заманчивым оказался калиевый пар. Реактор с кипящим в нём калием лёг в основу разрабатываемой нами энергетической установки космического корабля малой тяги — калиевый пар вращал турбогенератор. Такой „машинный“ способ преобразования тепла в электричество позволял рассчитывать на КПД до 40%, в то время как реальные термоэмиссионные установки давали кпд всего около 7%. Однако КАЭС с „машинным“ преобразованием ядерного тепла в электричество не получили развития. Дело завершилось выпуском подробного отчёта, по сути — „физической записки“ к техническому проекту космического корабля малой тяги для полёта с экипажем к Марсу. Сам проект так и не был разработан.

В дальнейшем, я думаю, просто пропал интерес к космическим полётам с использованием ядерных ракетных двигателей. После смерти Сергея Павловича Королёва поддержка работ ФЭИ по ионным движителям и „машинным“ ядерно-энергетическим установкам заметно ослабла. ОКБ-1 возглавил Валентин Петрович Глушко, у которого не было интереса к смелым перспективным проектам. Созданное им ОКБ „Энергия“ строило мощные химические ракеты и возвращаемый на Землю космический корабль „Буран“.

«Бук» и «Топаз» на спутниках серии «Космос»

Работы по созданию КАЭС с прямым преобразованием тепла в электричество, теперь уже в качестве источников питания для мощных радиотехнических спутников (космических радиолокационных станций и телетрансляторов), продолжались до начала перестройки. С 1970 по 1988 год в космос запустили около 30 радиолокационных спутников с ядерно-энергетическими установками „Бук“ с полупроводниковыми реакторами-преобразователями и два — с термоэмиссионными установками „Топаз“. „Бук“, по сути дела, представлял собой ТЭГ — полупроводниковый преобразователь Иоффе, только вместо керосиновой лампы в нём использовался ядерный реактор. Это был быстрый реактор мощностью до 100 кВт. Полная загрузка высокообогащённого урана составляла около 30 кг. Тепло из активной зоны передавалось жидким металлом — эвтектическим сплавом натрия с калием полупроводниковым батареям. Электрическая мощность достигала 5 кВт.

Установку „Бук“ под научным руководством ФЭИ разрабатывали специалисты ОКБ-670 М.М. Бондарюка, позднее — НПО „Красная звезда“ (главный конструктор — Г.М. Грязнов). Создать ракету-носитель для вывода спутника на орбиту поручили днепропетровскому КБ „Южмаш“ (главный конструктор — М.К. Янгель).

Время работы „Бука“ — 1-3 месяца. Если установка отказывала, спутник переводили на орбиту длительного существования высотой 1000 км. За почти 20 лет запусков было три случая падения спутника на Землю: два — в океан и один — на сушу, в Канаде, в окрестности Большого Невольничьего озера. Туда упал „Космос-954“, запущенный 24 января 1978 года. Он проработал 3,5 месяца. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. (Все эти данные приведены в совместном отчёте атомных комиссий США и Канады об операции „Утренний свет“.)

В термоэмиссионной ядерно-энергетической установке „Топаз“ использовался тепловой реактор мощностью до 150 кВт. Полная загрузка урана составляла около 12 кг — значительно меньше, чем у „Бука“. Основой реактора были тепловыделяющие элементы — „гирлянды“, разработанные и изготовленные группой Малыха. Они представляли собой цепочку термоэлементов: катод — „напёрсток“ из вольфрама или молибдена, заполненный окисью урана, анод — тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода достигала 1650°C. Электрическая мощность установки доходила до 10 кВт.

Первый лётный образец — спутник „Космос-1818“ с установкой „Топаз“ вышел на орбиту 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник — „Космос-1876“ был запущен через год. Он отработал на орбите почти в два раза дольше. Главным разработчиком „Топаза“ было ОКБ ММЗ „Союз“, возглавляемое С.К. Туманским (бывшее КБ конструктора авиамоторов А.А. Микулина).

Это было в конце 1950-х годов, когда мы занимались ионным движителем, а он — двигателем третьей ступени, предназначавшимся для ракеты, которой предстояло облететь Луну и совершить посадку на неё. Воспоминания о мельниковской лаборатории свежи и поныне. Она располагалась в Подлипках (ныне г. Королёв), на площадке № 3 ОКБ-1. Огромный цех площадью около 3000 м2, уставленный десятками письменных столов со шлейфными осциллографами, производящими запись на 100-миллиметровой рулонной бумаге (это была ещё прошлая эпоха, сегодня хватило бы одного персонального компьютера). У передней стены цеха — стенд, где монтируется камера сгорания двигателя „лунной“ ракеты. К осциллографам идут тысячи проводов от датчиков скорости газов, давления, температуры и других параметров. День начинается в 9.00 с зажигания двигателя. Он работает несколько минут, затем сразу после остановки бригада механиков первой смены разбирает его, тщательно осматривает и измеряет камеру сгорания. Одновременно анализируются ленты осциллографов и вырабатываются рекомендации по изменениям конструкции. Вторая смена — конструкторы и рабочие мастерских вносят рекомендованные изменения. В третью смену на стенде монтируются новая камера сгорания и система диагностики. Через сутки, ровно в 9.00, — следующий сеанс. И так без выходных недели, месяцы. Более 300 вариантов двигателя за год!

Так создавались двигатели химических ракет, которым предстояло работать всего 20-30 минут. Что же говорить об испытаниях и доработках ядерно-энергетических установок — расчёт был на то, что они должны работать не один год. Это требовало поистине гигантских усилий.

В России провели испытания системы охлаждения ядерной энергодвигательной установки (ЯЭДУ) - одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полеты. Зачем в космосе нужен ядерный двигатель, как он работает и почему «Роскосмос» считает эту разработку главным российским космическим козырем, рассказывают «Известия».

История атома

Если положить руку на сердце, то со времен Королева ракеты-носители, используемые для полетов в космос, кардинальных изменений не претерпели. Общий принцип работы - химический, основанный на сгорании топлива с окислителем, остается прежним. Меняются двигатели, система управления, виды топлива. Основа путешествий в космосе остается неизменной - реактивная тяга толкает ракету или космический аппарат вперед.

Очень часто можно услышать, что нужен серьезный прорыв, разработка, способная заменить реактивный двигатель, чтобы повысить эффективность и сделать полеты к Луне и Марсу более реалистичными. Дело в том, что в настоящее время едва ли не большая часть массы межпланетных космических аппаратов, - это топливо и окислитель. А что если отказаться от химического двигателя вообще и начать использовать энергию ядерного двигателя?

Идея создания ядерной двигательной установки не нова. В СССР развернутое постановление правительства по проблеме создания ЯРД было подписано еще в далеком 1958 году. Уже тогда были проведены исследования, показавшие, что, используя ядерный ракетный двигатель достаточной мощности, можно добраться до Плутона (еще не утратившего свой планетный статус) и обратно за шесть месяцев (два туда и четыре обратно), потратив на путешествие 75 т топлива.

Занимались в СССР разработкой ядерного ракетного двигателя, однако приближаться к реальному прототипу ученые стали только сейчас. Дело не в деньгах, тема оказалась настолько сложной, что ни одна из стран не смогла до сих пор создать работающий прототип, а в большинстве случаев всё заканчивалось планами и чертежами. В США проводились испытания двигательной установки для полета на Марс в январе 1965 года. Но дальше тестов KIWI проект NERVA по покорению Марса на ядерном двигателе не сдвинулся, да и был он значительно проще, чем нынешняя российская разработка. Китай поставил в свои планы космического развития создание ядерного двигателя поближе к 2045 году, что тоже очень и очень не скоро.

В России же новый виток работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем начался в 2010 году. Проект создается силами «Роскосмоса» и «Росатома» совместно, и его можно назвать одним из самых серьезных и амбициозных космических проектов последнего времени. Головным исполнителем по ЯЭДУ является Исследовательский центр им. М.В. Келдыша.

Ядерное движение

На протяжении всего времени разработки в прессу просачиваются новости о готовности то одной, то другой части будущего ядерного двигателя. При этом в целом, кроме специалистов, мало кто представляет себе, как и за счет чего он будет работать. Собственно, суть космического ядерного двигателя примерно такая же, как и на Земле. Энергия ядерной реакции используется для нагрева и работы турбогенератора-компрессора. Если говорить проще, то ядерная реакция используется для получения электричества, практически точно так же, как и на обычной атомной электростанции. А уже при помощи электричества работают электроракетные двигатели. В данной установке это ионные двигатели высокой мощности.

В ионных двигателях тяга создается путем создания реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле. Ионные двигатели есть и сейчас, они испытываются в космосе. Пока у них только одна проблема - практически все они имеют очень небольшую тягу, хоть и расходуют очень мало топлива. Для космических путешествий такие двигатели - прекрасный вариант, особенно если решить проблему получения электричества в космосе, что и сделает ядерная установка. К тому же работать ионные двигатели могут достаточно долго, максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет.

Если посмотреть на схему, можно заметить, что ядерная энергия начинает свою полезную работу совсем не сразу. Сначала нагревается теплообменник, затем вырабатывается электричество, оно уже используется для создания тяги ионного двигателя. Увы, более простым и эффективным образом использовать ядерные установки для движения человечество пока не научилось.

В СССР запускались спутники с ядерной установкой в составе комплекса целеуказания «Легенда» для морской ракетоносной авиации, но это были совсем маленькие реакторы, а их работы хватало только на выработку электричества для повешенных на спутник приборов. Советские космические аппараты имели мощность установки в три киловатта, сейчас же российские специалисты работают над созданием установки с мощностью более мегаватта.

Проблемы космического масштаба

Естественно, что проблем у ядерной установки в космосе гораздо больше, чем на Земле, и самая главная из них - это охлаждение. В обычных условиях для этого используется вода, очень эффективно поглощающая тепло двигателя. В космосе же сделать это нельзя, и ядерным двигателям требуется эффективная система охлаждения - причем тепло от них нужно отводить во внешнее космическое пространство, то есть делать это можно только в виде излучения. Обычно для этого в космических кораблях используются панельные радиаторы - из металла, с циркулирующей по ним жидкостью теплоносителем. Увы, такие радиаторы, как правило, имеют большой вес и габариты, кроме того, они никак не защищены от попадания метеоритов.

В августе 2015 года на авиасалоне МАКС была показана модель капельного охлаждения ядерных энергодвигательных систем. В ней жидкость, рассеянная в виде капель, пролетает в открытом космическом пространстве, охлаждается, а затем снова собирается в установку. Только представьте себе огромный космический корабль, в центре которого гигантская душевая установка, из которой вырываются наружу миллиарды микроскопических капель воды, летят в космосе, а затем засасываются в огромный раструб космического пылесоса.

Совсем недавно стало известно, что капельная система охлаждения ядерной двигательной установки была испытана в земных условиях. При этом система охлаждения - это важнейший этап в создании установки.

Теперь дело за тем, чтобы испытать ее работоспособность в условиях невесомости и уже только после этого систему охлаждения можно будет пробовать создать в размерах, требуемых для установки. Каждое такое успешное испытание по чуть-чуть приближает российских специалистов к созданию ядерной установки. Ученые спешат изо всех сил, ведь считается, что вывод ядерного двигателя в космос сможет России помочь вернуть лидерские позиции в космосе.

Ядерная космическая эра

Допустим, это получится, и уже через несколько лет в космосе начнет свою работу ядерный двигатель. Чем это поможет, как это можно будет использовать? Для начала стоит уточнить, что в том виде, в котором ядерная двигательная установка существует сегодня, она может работать только в космическом пространстве. Взлетать с Земли и садиться в таком виде она не может никак, тут пока без традиционных химических ракет не обойтись.

А зачем в космосе? Ну слетает человечество до Марса и Луны быстро, и всё? Не совсем так. В настоящее время все проекты орбитальных заводов и фабрик, работающих на орбите Земли, стопорятся из-за отсутствия сырья для работы. Нет смысла строить что-либо в космосе до тех пор, пока не найден способ выводить на орбиту большое количество требуемого сырья, например металлической руды.

Но зачем поднимать их с Земли, если можно, наоборот, привезти из космоса. В том же поясе астероидов в Солнечной системе есть просто огромные запасы различных металлов, в том числе и драгоценных. И вот в таком случае создание ядерного буксира станет просто палочкой-выручалочкой.

Привезти на орбиту огромный платино- или золотосодержащий астероид и начать его разделывать прямо в космосе. По расчетам специалистов такая добыча с учетом объема может оказаться одной из наиболее выгодных.

А есть ли менее фантастическое применение ядерному буксиру? Например, с его помощью можно развозить по нужным орбитам спутники или привозить в нужную точку пространства космические аппараты, например на лунную орбиту. В настоящее время для этого используются разгонные блоки, например российский «Фрегат». Они дорогие, сложные и одноразовые. Ядерный буксир сможет подхватывать их на низкой околоземной орбите и доставлять куда необходимо.

Аналогично и с межпланетными путешествиями. Без быстрого способа доставлять грузы и людей на орбиту Марса шансов начать колонизацию просто нет. Ракеты-носители нынешнего поколения будут делать это очень дорого и долго. До сих пор длительность полета остается одной из самых серьезных проблем при полете к другим планетам. Выдержать месяцы полета на Марс и обратно в закрытой капсуле космического корабля - задача не из простых. Ядерный буксир сможет помочь и тут, существенно сократив это время.

Необходимо и достаточно

В настоящее время всё это выглядит фантастикой, но до тестирования прототипа, как утверждают ученые, остаются считаные годы. Главное, что требуется, это не только завершить разработку, но и сохранить в стране необходимый уровень космонавтики. Даже при падении финансирования должны продолжать взлетать ракеты, строиться космические аппараты, работать ценнейшие специалисты.

Иначе один атомный двигатель без соответствующей инфраструктуры делу не поможет, для максимальной эффективности разработку будет очень важно не просто продать, но использовать самостоятельно, показав все возможности нового космического транспортного средства.

Пока же всем жителям страны, не завязанным на работе, остается только посматривать на небо и надеяться, что у российской космонавтики всё получится. И ядерный буксир, и сохранение нынешних возможностей. В другие исходы и верить не хочется.

Можно было бы начать эту статью традиционным пассажем про то, как писатели-фантасты выдвигают смелые идеи, а ученые потом воплощают их в жизнь. Можно, но писать штампами не хочется. Лучше вспомнить, что современные ракетные двигатели, твердотопливные и жидкостные, имеют более чем неудовлетворительные характеристики для полетов на относительно дальние дистанции. Вывести груз на орбиту Земли они позволяют, доставить что-то на Луну – тоже, хотя и обходится такой полет дороже. А вот полететь на Марс с такими двигателями уже нелегко. Им подавай горючее и окислитель в нужных объемах. И объемы эти прямо пропорциональны расстоянию, которое надо преодолеть.


Альтернатива традиционным химическим ракетным двигателям – двигатели электрические, плазменные и ядерные. Из всех альтернативных двигателей до стадии разработки двигателя дошла только одна система – ядерная (ЯРД). В Советском Союзе и в США еще в 50-х годах прошлого века были начаты работы по созданию ядерных ракетных двигателей. Американцы прорабатывали оба варианта такой силовой установки: реактивный и импульсный. Первая концепция подразумевает нагрев рабочего тела при помощи ядерного реактора с последующим выбросом через сопла. Имульсный ЯРД, в свою очередь, движет космический аппарат за счет последовательных взрывов небольшого количества ядерного топлива.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД. Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

До строительства опытного экземпляра удалось дойти только реактивным ЯРД. Это были советский РД-0410 и американский NERVA. Они работали по одинаковому принципу: в «обычном» ядерном реакторе нагревается рабочее тело, которое при выбросе из сопел и создает тягу. Рабочим телом обоих двигателей был жидкий водород, но на советском в качестве вспомогательного вещества использовался гептан.

Тяга РД-0410 составляла 3,5 тонны, NERVA давал почти 34, однако имел и большие габариты: 43,7 метров длины и 10,5 в диаметре против 3,5 и 1,6 метров соответственно у советского двигателя. При этом американский двигатель в три раза проигрывал советскому по ресурсу – РД-0410 мог работать целый час.

Однако оба двигателя, несмотря на перспективность, тоже остались на Земле и никуда не летали. Главная причина закрытия обоих проектов (NERVA в середине 70-х, РД-0410 в 1985 году) – деньги. Характеристики химических двигателей хуже, чем у ядерных, но цена одного запуска корабля с ЯРД при одинаковой полезной нагрузке может быть в 8-12 раз больше пуска того же «Союза» с ЖРД. И это еще без учета всех расходов, необходимых для доведения ядерных двигателей до пригодности к практическому применению.

Вывод из эксплуатации «дешевых» Шаттлов и отсутствие в последнее время революционных прорывов в космической технике требует новых решений. В апреле этого года тогдашний глава Роскосмоса А. Перминов заявил о намерении разработать и ввести в эксплуатацию совершенно новый ЯРД. Именно это, по мнению Роскосмоса, должно кардинально улучшить «обстановку» во всей мировой космонавтике. Теперь же выяснилось, кто должен стать очередными революционерами космонавтики: разработкой ЯРД займется ФГУП «Центр Келдыша». Генеральный директор предприятия А. Коротеев уже обрадовал общественность о том, что эскизный проект космического корабля под новый ЯРД будет готов уже в следующем году. Проект двигателя должен быть готов к 2019, а испытания запланированы на 2025 год.

Комплекс получил название ТЭМ – транспортно-энергетический модуль. Он будет нести ядерный реактор с газовым охлаждением. С непосредственным движителем пока не определились: либо это будет реактивный двигатель наподобие РД-0410, либо электрический ракетный двигатель (ЭРД). Однако последний тип пока нигде в мире массово не применялся: ими оснащались всего три космических аппарата. Но в пользу ЭРД говорит тот факт, что от реактора можно запитывать не только двигатель, но и множество других агрегатов или вообще использовать весь ТЭМ как космическую электростанцию.

© Оксана Викторова/Коллаж/Ridus

Заявление, сделанное Владимиром Путиным в ходе своего послания Федеральному собранию, о наличии в России крылатой ракеты, приводимой в движение двигателем на ядерной тяге, вызвало бурный ажиотаж в обществе и СМИ. В то же время о том, что представляет собой такой двигатель, и о возможностях его использования до последнего времени было известно достаточно мало, как широкой общественности, так и специалистам.

«Ридус» попытался разобраться, о каком техническом устройстве мог вести речь президент и в чем состоит его уникальность.

Учитывая, что презентация в Манеже делалась не на аудиторию технических специалистов, а для «общей» публики, ее авторы могли допустить определенную подмену понятий, не исключает заместитель директора Института ядерной физики и технологий НИЯУ МИФИ Георгий Тихомиров.

«То, что говорил и показывал президент, специалисты называют компактными силовыми установками, эксперименты с которыми проводились изначально в авиации, а затем при освоении дальнего космоса. Это были попытки решить неразрешимую проблему достаточного запаса топлива при перелетах на неограниченные дальности. В этом смысле презентация совершенно корректна: наличие такого двигателя обеспечивает энергоснабжение систем ракеты или любого иного аппарата сколь угодно долгое время», - сказал он «Ридусу».

Работы с таким двигателем в СССР начались ровно 60 лет назад под руководством академиков М. Келдыша, И. Курчатова и С. Королева. В те же самые годы аналогичные работы велись в США, но были свернуты в 1965 году. В СССР работы продолжались еще около десятилетия, прежде чем тоже были признаны неактуальными. Возможно, поэтому в Вашингтоне не сильно передернули, заявив, что не удивлены презентацией российской ракеты.

В России идея ядерного двигателя никогда не умирала - в частности, с 2009 года ведется практическая разработка такой установки. Судя по срокам, заявленные президентом испытания вполне укладываются именно в этот совместный проект Роскосмоса и Росатома - поскольку разработчики и планировали провести полевые испытания двигателя в 2018 году. Возможно, в связи с политическими причинами они чуть поднатужились и сдвинули сроки «влево».

«Технологически это устроено так, что ядерный энергоблок нагревает газовый теплоноситель. И этот разогретый газ либо вращает турбину, либо создает реактивную тягу напрямую. Определенное лукавство в презентации ракеты, которую мы услышали, состоит в том, что дальность ее полета все-таки не бесконечна: она ограничена объемом рабочего тела - жидкого газа, который физически можно закачать в баки ракеты», - говорит специалист.

При этом у космической ракеты и крылатой ракеты принципиально разные схемы управления полетом, поскольку у них разные задачи. Первая летит в безвоздушном пространстве, ей не надо маневрировать, - достаточно придать ей первоначальный импульс, и далее она движется по расчетной баллистической траектории.

Крылатая же ракета, наоборот, должна непрерывно менять траекторию, для чего у нее должен быть достаточный запас топлива, чтобы создавать импульсы. Будет ли это топливо воспламеняться ядерной энергоустановкой или традиционной - в данном случае не принципиально. Принципиален только запас этого топлива, подчеркивает Тихомиров.

«Смысл ядерной установки при полетах в дальний космос - это наличие на борту источника энергии для питания систем аппарата неограниченно долгое время. При этом может быть не только ядерный реактор, но и радиоизотопные термоэлектрические генераторы. А смысл такой установки на ракете, полет которой не будет продолжаться долее нескольких десятков минут, мне пока не вполне ясен», - признаётся физик.

Доклад в Манеже лишь на пару недель запоздал по сравнению с заявлением NASA , сделанным 15 февраля, о том, что американцы возобновляют научно-исследовательские работы по ядерному ракетному двигателю, заброшенные ими полвека назад.

Кстати, в ноябре 2017 года уже и Китайская корпорация аэрокосмической науки и техники (CASC) сообщила, что до 2045 года в КНР будет создан космический корабль на ядерном двигателе. Поэтому сегодня можно смело говорить о том, что мировая ядерно-двигательная гонка началась.

 
Статьи по теме:
Ликёр Шеридан (Sheridans) Приготовить ликер шеридан
Ликер "Шериданс" известен во всем мире с 1994 года. Элитный алкоголь в оригинальной двойной бутылке произвел настоящий фурор. Двухцветный продукт, один из которых состоит из сливочного виски, а второй из кофейного, никого не оставляет равнодушным. Ликер S
Значение птицы при гадании
Петух в гадании на воске в большинстве случаев является благоприятным символом. Он свидетельствует о благополучии человека, который гадает, о гармонии и взаимопонимании в его семье и о доверительных взаимоотношениях со своей второй половинкой. Петух также
Рыба, тушенная в майонезе
Очень люблю жареную рыбку. Но хоть и получаю удовольствие от ее вкуса, все-таки есть ее только в жареном виде, как-то поднадоело. У меня возник естественный вопрос: "Как же еще можно приготовить рыбу?".В кулинарном искусстве я не сильна, поэтому за совета
Программа переселения из ветхого и аварийного жилья
Здравствуйте. Моя мама была зарегистрирована по адресу собственника жилья (сына и там зарегистрирован её внук). Они признаны разными семьями. Своего жилья она не имеет, признана малоимущей, имеет право как инвалид на дополнительную жилую площадь и...