Алгебра высказываний. Логические операции. Сложные высказывания. Их виды и условия истинности

Пример 1. Установить истинность высказывания · С
Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С
0 1 1 0 0 1 1

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

Эквивалентность высказываний.

С помощью таблиц истинности можно установить эквивалентность двух или нескольких высказываний.

Высказывания называются эквивалентными, если соответствующие значения каждого из них совпадают в таблице истинности.

Пример 2. Утверждается, что высказывание А+В· С эквивалентно высказыванию (А+В)· (А+С)
Решение. Проверка ведется путем составления таблицы истинности.

А В С В С А+В· С А+В А+С (А+В)· (А+С)

Сравнивая 5-ю и 8-ю колонки убеждаемся, что все значения, получаемые по формуле А+В· С, совпадают со значениями, получаемыми по формуле (А+В)· (А+С), т.е. высказывания эквивалентны (равносильны). Одно может заменить другое.
Эквивалентные (равносильные) высказывания соединяют знаком º А + В·Сº (А+В)· (А+С).
Отметим различие между эквивалентностью и эквиваленцией.
Эквиваленция является логической операцией, позволяющей по двум заданным высказываниям А и В построить новое А« В.
Эквивалентность же является отношением между двумя составными высказываниями, состоящим в том, что их значения истинности всегда одни и те же.

Тавтология.

Пусть дано высказывание А· и необходимо составить таблицу истинности.
Высказывание А· ложно, истинность его не зависит от истинности высказывания А.

Рассмотрим высказывание В+ .
В этом случае высказывание В+ всегда истинно, независимо от истинности В.

В В+

Высказывания, истинность которых постоянна и не зависит от истинности входящих в них простых высказываний, а определяется только их структурой, называются тождественными или тавтологиями.
Различают тождественно-истинные и тождественно-ложные высказывания.
В формулах каждое тождественно-истинное высказывание заменяется 1, а тождественно-ложное - 0. Закон исключенного третьего.
A· º 0
В+ º 1

Пример 3. Докажите тавтологию (XÙ Y)® (XÚ Y)
Решение.

Т.к. высказывание (XÙ Y)® (XÚ Y) всегда истинно, то оно является тавтологией.

Пример 4. Докажите тавтологию ((X® Y)Ù (Y® Z))® (X® Z)
Решение.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ F1 _ _ _ _ F2 _ _ _ _ _ F

X Y Z X® Y Y® Z X® Z F1Ù F2 (F1Ù F2) ® F3

Из таблицы видно, что исследуемое высказывание - тавтология, т.к. оно истинно постоянно.

Вопросы и задания.

1. Какому из ниже приведенных высказываний:

а) (A+C); б) +B; в) +C); г) A+ ;
эквивалентно высказывание (B+C)

2. Установите с помощью таблиц истинности, какие из следующих формул - тавтологии:
а) « ); б) ; в) ;

г) ; д) (X® Y)« (Y® X); е) (X® Y)« ;

ж) (X® Y)« .

3. Установить истинность высказывания

4. Эквивалентны ли высказывания:
и ?

5. Установить, является ли данное высказывание тавтологией:
а) ; б)

6. Для каждой формулы придумайте формализуемые ими предложения:
а) ; б) ; в) .

7. Из простых высказываний: “Виктор хороший пловец” - А; “Виктор хорошо ныряет” - В; “Виктор хорошо поет” - С, составлено сложное высказывание, формула которого имеет вид:
X=(A+C)· (A+B). Установить, эквивалентно ли высказывание Х высказыванию: “Виктор - хороший пловец и Виктор хорошо поет”.

8.
а) ; б) ;
в) ((X1® X2)® X3)Ù (X3« X1); г) ((X® Y)Ù (Y® Z))® (X® Z).

9. Установить истинность высказываний:
а) , , ;
б) , , ;
в) , , ;
г) , , .

Законы логики

Равносильности формул логики высказываний часто называют законами логики.
Знание законов логики позволяет проверять правильность рассуждений и доказательств.
Нарушения этих законов приводят к логическим ошибкам и вытекающим из них противоречиям.
Перечислим наиболее важные из них:
1. Xº X Закон тождества
2. Закон противоречия
3. Закон исключенного третьего
4. Закон двойного отрицания
5. XÙ Xº X , XÚ Xº C Законы идемпотентности
6. C Ù U º U Ù C , C Ú U º U Ú C Законы коммутативности (переместительности)
7 . (C Ù U) Ù Z ºC Ù (U Ù Z) , (C Ú U) Ú Z º C Ú (U Ú Z) - Законы ассоциативности (сочетательности)
8. C Ù (U Ú Z) º (C Ù U) Ú (C Ù Z) , C Ú (U Ù Z) º (C Ú U) Ù (C Ú Z) - Законы дистрибутивности (распределительности)
9. , Законы де Моргана
10. XÙ 1º C , C Ú 0 º C
11. C Ù 0 º 0 , C Ú 1 º 1
12. C Ù (C Ú U) º C , C Ú (C Ù U) º C Законы поглощения
13. (C Ú U) Ù ( Ú U) º U , (C Ù U) Ú ( Ú U) º U Законы склеивания

1-й закон сформулирован древнегреческим философом Аристотелем. Закон тождества утверждает, что мысль, заключенная в некотором высказывании, остается неизменной на протяжении всего рассуждения, в котором это высказывание фигурирует.

Закон противоречия говорит о том, что никакое предложение не может быть истинно одновременно со своим отрицанием.
“Это яблоко спелое” и “Это яблоко не спелое”.

Закон исключенного третьего говорит о том, что для каждого высказывания имеются лишь две возможности: это высказывание либо истинно либо ложно. Третьего не дано. “Сегодня я получу 5 либо не получу”. Истинно либо суждение, либо его отрицание.

Закон двойного отрицания. Отрицать отрицание какого-нибудь высказывания - то же, что утверждать это высказывание.
“ Неверно, что 2× 2¹ 4”

Законы идемпотентности. В алгебре логики нет показателей степеней и коэффициентов. Конъюнкция одинаковых “сомножителей” равносильна одному из них.

Законы коммутативности и ассоциативности. Конъюнкция и дизъюнкция аналогичны одноименным знакам умножения и сложения чисел.
В отличие от сложения и умножения чисел логическое сложение и умножение равноправны по отношению к дистрибутивности: не только конъюнкция дистрибутивна относительно дизъюнкции, но и дизъюнкция дистрибутивна относительно конъюнкции.

Смысл законов де Моргана (Август де Морган (1806-1871) - шотландский математик и логик) можно выразить в кратких словесных формулировках:
- отрицание логического произведения эквивалентно логической сумме отрицаний множителей.
- отрицание логической суммы эквивалентно логическому произведению отрицаний слагаемых.

Доказать законы логики можно:
1) с помощью таблиц истинности;
2) с помощью равносильностей.
Докажем законы склеивания и поглощения с помощью равносильностей:
1) (C Ú U) Ù ( Ú U) º (C + U) × ( + U) º C × + U × + U × U + C × U ºU × + U + C × U º U × +U (1 + C) º U × + U º U ( + 1) º U (Закон склеивания)

2) C Ù (C Ú U) º C × C +C × U º C +C × U º C (1 + U) º C (Закон поглощения)

Задание. Доказать законы логики с помощью таблиц истинности.

Тождественные преобразования

Упрощение формул.

Пример 1. Упростить формулу (АÚВ)· (АÚС)
Решение.
а) Раскроем скобки (A Ú B) · (A ÚC) º A · A Ú A · C Ú B · A Ú B · C
б) По закону равносильности A · A º A , следовательно,
A · A Ú A · C ÚB · A Ú B · C º A ÚA · C Ú B · A Ú B · C
в) В высказываниях А и А· C вынесем за скобки А и используя свойство АÚ1º 1, получим АÚА· СÚ B · A Ú B · C º A ·(1 ÚС) Ú B · A Ú B · Сº A ÚB · A Ú B· С
г) Аналогично пункту в) вынесем за скобки высказывание А.
AÚB · A Ú B · Сº A (1ÚB)ÚB · Сº A Ú B · С
Таким образом, мы доказали закон дистрибутивности.

2. Преобразования “поглощение” и “склеивание”

Пример 2. Упростить выражение АÚ A · B

Решение. A ÚA · B º A (1 Ú B) º A - поглощение

Пример 3. Упростить выражение A · B Ú A · - знаки логического сложения;
- знаки логического умножения.
А будут использованы:
- знаки отрицания и логического умножения;
- знаки отрицания и логического сложения.

Пример 5. Преобразовать формулу так, чтобы в ней не использовались знаки логического сложения.
Решение. Воспользуемся законом двойного отрицания, а затем формулой де Моргана.

Пример 6. Преобразовать формулу так, чтобы в ней не использовались знаки логического умножения.
Решение. Используя формулы де Моргана и закон двойного отрицания получим:

Пример 1. Установить истинность высказывания · С Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С.

В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой. При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С
0 0 0 1 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 1 1
1 0 0 1 1 0 0
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 1 0 1 0 0

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 1. Установление истинности сложных высказываний.:

  1. 29. Проблема разрешимости в алгебре высказываний(АВ). Алгоритмы проверки формул алгебры высказываний на тождественную истинность: составление таблицы истинности, выполнение равносильных преобразований (анализ КНФ), алгоритм редукции, алгоритм Квайна. Преимущества и недостатки указанных методов.
  2. Вопрос 6. Исчисление высказываний. Аксиомы. Правило вывода. Вывод. Тождественная истинность выводимых формул (доказать). Непротиворечивость исчисления высказываний. Теорема о полноте исчисления высказываний. Проблема разрешимости. Исчисление высказываний. Проблема разрешимости

Урок №2

Алгебра высказываний. Логические операции.

(урок комбинированный, включающий повторение предыдущей темы,

введение нового материала и закрепление)

Цель урока: Сформировать у учащихся понятия: логическое высказывание, логические операции.

Задачи урока :

Повторить основные материалы 1 урока (формы человеческого мышления: понятие, суждение, умозаключение);

Познакомить с определением алгебры высказываний;

Познакомить с основными логическими операциями.

Требования к знаниям и умениям:

Учащиеся должны знать:

Что изучает алгебра высказываний и что является объектом изучения алгебры высказываний;

Значения понятий: логическое высказывание, логические операции;

Таблицы истинности логических операций.

Учащиеся должны уметь:

Приводить примеры логических высказываний;

Определять значения логических высказываний;

Называть логические операции и строить для них таблицы истинности.

Этапы урока

I. Организационный момент. Постановка цели урока. 2 мин.

II. Повторение. 7мин.

III. Проверка домашнего задания. 5 мин.

IV. Введение нового материала. 20 мин.

V. Закрепление. 7 мин.

VI. Подведение итогов урока. 3 мин.

VII. Постановка домашнего задания. 1 мин.

Ход урока

II. Повторение .

1) Повторение основных определений и понятий 1 урока:

· Понятие – форма мышления, в которой отражены существенные признаки объектов.

o Объём понятия – множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия.

Привести примеры .

· Суждение (высказывание, утверждение) - форма мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях между ними.

o Форма суждения – это его строение, способ связи его составных частей.

· Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам вывода получаем суждение-заключение (вывод умозаключения)

- Определите, какие из перечисленных фраз являются высказываниями и почему?

1. Как хорошо быть генералом!

2.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6.

7.

(Примеры 1 и 3 не являются высказываниями, т. к. являются восклицательным и побудительным предложениями соответственно).

- Теперь определите, простые или составные суждения даны .

(В 5 примере можно разбить на два простых утверждения, значит, оно составное.)

- Определите значения высказываний (истина или ложь).

На 6 примере убеждаемся, что содержание высказывания часто субъективная характеристика. Обоснование истинности или ложности простых высказываний решается вне науки логики. Например, опираясь на свой жизненный опыт, мы присваиваем определённое значение суждению 6.

Русские пословицы как в примере 4 будут всегда истинны, т. к. опираются на жизненный опыт целых поколений людей.

В примере 7 значение высказывания решается в курсе геометрии, а в 5 утверждении в курсе истории.

Результаты оформляются в виде следующей таблицы:

Фразы

Высказывания

Истина или ложь

Простые высказывания

1. Как хорошо быть генералом!

2. Без труда не выловишь и рыбку из пруда.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6. Талант всегда пробьёт себе дорогу.

7. Сумма углов треугольника равна 1800.

На прошлом уроке мы говорили, что каждое высказывание состоит из трех элементов:
субъекта, предиката и связки . Субъект (S) - понятие о предмете. Предикат (P) - понятие о свойствах и отношениях предмета. Связка - отношение между субъектом и предикатом.

Определите, что в простых высказываниях является субъектом, предикатом и связкой.

Без труда не выловишь и рыбку из пруда.

Все медведи живут на севере.

Талант всегда пробьёт себе дорогу.

Сумма углов треугольника равна 1800.

III. Проверка домашнего задания:

Карточка для домашней работы

1.Из приведенных простых высказываний составьте и запишите не менее 3-ёх составных высказываний:

1) Поедем на дачу.

2) Хорошая погода.

3) Плохая погода.

4) Мы поедем на пляж.

5) Антон приглашает нас в театр .

2. Выведите, если это возможно, заключение из каждой пары посылок:

А) Все птицы – животные.

Все воробьи – птицы.

Б) Некоторые уроки трудны.

Всё, что трудно, требует внимания.

В) Ни один добрый поступок не является незаконным.

Всё, что законно, можно делать без страха.

А) Тем, кто лыс, расчёска не нужна.

Ни одна ящерица не имеет волос.

Следовательно, ящерицам расчёска не нужна.

Б) Всем, кто отлично закончит 3 четверть, подарят компьютер.

Ты закончил 3 четверть без троек.

Значит, готовься получить в подарок компьютер.

VI. Объяснение нового материала

Алгебра высказываний

Идею о возможности математизации логики высказал еще в XVII веке. Он пытался создать универсальный язык, с помощью которого каждому понятию и высказыванию можно было бы дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы сразу определить, истинно данное высказывание или ложно. То есть споры между людьми можно было бы разрешать посредством вычислений. Идея Лейбница оказалось ложной, так как невозможно (не найдены способы) свести человеческое мышление к некоторому математическому исчислению.

Однако, подлинный прогресс этой науки был достигнут в середине XIX века прежде всего благодаря трудам Дж. Буля "Математический анализ логики". Он перенес на логику законы и правила алгебраических действий, ввёл логические операции, предложил способ записи высказываний в символической форме.

В развитии математической логики приняли участие многие выдающиеся математики и логики конца XIX и XX веков, в том числе К. Гедель (австр.), Д. Гильберт (нем.), С. Клини (амер.), Э. Пост (амер.), А. Тьюринг (анг.), А. Чёрч (амер.), и многие другие.

Современная математизированная формальная логика представляет собой обширную научную область, которая находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (синтез и анализ автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Таким образом, объектами изучения алгебры логики являются высказывания.

Под высказыванием (суждением) будем понимать повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Обозначать высказывания будем большими латинскими буквами. Если высказывание А истинное, то будем писать "А = 1" и говорить: "А - истинно". Если высказывание Х ложно, то будем писать "Х = 0" и говорить "Х ложно".

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равно 180о» устанавливается геометрией, причём в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского – ложным.

Алгебра логики отвлекается от смыслового содержания высказываний. Её интересует только один факт – истинно или ложно данное высказывание. Такое суждение интересов даёт возможность изучать высказывания алгебраическими методами.

Логические операции

В алгебре логики над высказываниями можно производить различные операции (как и в алгебре действительных чисел определены операции сложения, деления, возведения в степень над числами). Мы рассмотрим только некоторые, наиболее важные из них:

    Дизъюнкция (логическое сложение) Импликация (логическое следование) Эквивалентность (логическое равенство)

1) Инверсия (логическое отрицание)

Инверсия (логическое отрицание) – это логическая операция, которая каждому данному высказыванию ставит в соответствие новое высказывание, которое истинно, если данное высказывание – ложно, и ложно, если данное высказывание истинно.

Логические операции задаются таблицами истинности и могут быть графически проиллюстрированы с помощью кругов Эйлера , названных в честь великого математика, физика и астронома Леонарда Эйлера ()

Обозначение инверсии: ; неА ; А; NOT А

0 " style="border-collapse:collapse;border:none">

А

Образуется из простого высказывания с помощью добавления частицы НЕ к сказуемому или использованием оборота речи "НЕВЕРНО, ЧТО...".

Пример: А = "На улице дождь"

= "Неверно, что на улице дождь"

Задание 1. Приведите пример высказывания и его отрицания.

Определите истинность каждого.

Итак, инверсия высказывания истинна, когда высказывание ложно.

2) Конъюнкция (логическое умножение)

истинно тогда и только тогда, когда оба исходных высказывания истинны.

Обозначение конъюнкции: А &В , А andВ , А LВ , А В .

Таблица истинности:

А &В

Образуется соединением двух высказываний в одно с помощью союза «И»

Пример: А = "На улице дождь"

В= "Небо голубое"

А &В = "На улице дождь и небо голубое"

Задание 2. а) Приведите примеры двух высказываний и получите составное высказывание используя логическую связку "И".

Итак, конъюнкция двух высказываний истинна тогда и только тогда, когда оба исходных высказывания истинны.

3) Дизъюнкция (логическое сложение) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

Обозначение дизъюнкции: А V В , А OR В , А +В .

0 " style="border-collapse:collapse;border:none">

А V В

Образуется соединением двух высказываний в одно с помощью союза «ИЛИ»

Пример: А = "На улице дождь"

В= "Небо голубое"

А V В = "На улице дождь или небо голубое"

Задание 3. а) Приведите примеры двух высказываний и получите составное высказывание используя связку "ИЛИ".

Итак, дизъюнкция двух высказываний истинна тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

4) Импликация (логическое следование) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

ложно тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

Обозначение дизъюнкции: А ® В .

Таблица истинности: Диаграмма Эйлера:

«ЕСЛИ …, ТО …»

Если клятва дана, то она должна выполняться.

Если число делится на 9, то оно делится и на 3.

Пример: А = " На улице дождь"

В= "Небо голубое"

А ® В = "Если на улице дождь, то небо голубое"

Задание 4 . а) Приведите примеры двух высказываний и получите составное высказывание, используя связку "ЕСЛИ, ТО...".

б) Определите истинность или ложность каждого из трех высказываний

Итак, импликация двух высказываний ложна тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

5) Эквивалентность (логическое равенство) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

Обозначение дизъюнкции: А « В, А = В, А≡В .

Таблица истинности: Диаграмма Эйлера:


Образуется соединением двух высказываний в одно с помощью оборота речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

Угол называется прямым тогда и только тогда, когда он равен 900

Все законы математики, физики, все определения – эквивалентность высказываний

Две прямые параллельны тогда и только тогда, когда они не пересекаются.

Пример: А = "На улице дождь"

В= "Небо голубое"

А « В = "На улице дождь тогда и только тогда, когда небо голубое"

Задание 5. а) Приведите примеры двух высказываний и получите составное высказывание используя связку речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

б) Определите истинность или ложность каждого из трех высказываний.

Итак, эквивалентность двух высказываний истинна тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

VI. Закрепление изученного.

1. Объясните, почему следующие предложения не являются высказываниями :

· Какого цвета этот дом?

· Число Х не превосходит единицы.

· Посмотрите в окно.

· Пейте томатный сок!

· Эта тема скучна.

· Вы были в театре?

2. Объясните, почему формулировка любой теоремы является высказыванием.

3. Приведите по 2 примера истинных и ложных высказываний из математики, биологии, истории, информатики, литературы.

4. Из следующих предложений выбрать те, которые являются высказываниями:

    Коля спросил: «Как пройти к Большому театру?» Как пройти в библиотеку? Картины Пикассо слишком абстрактны. Решение задачи – информационный процесс. Число 2 является делителем числа 7 в некоторой системе счисления.

5. Выбрать истинные высказывания:

· “Число 28 является совершенным числом”

· “Без труда не выловишь и рыбку из пруда”

· “Талант всегда пробьёт себе дорогу”

· “Некоторые животные мыслят”

· “Информатика - наука об алгоритмах”

· “2+3*5=30”

· “Все ученики любят информатику”

6.

7. Какая логическая операция соответствует данной таблице истинности?

8. Какая логическая операция соответствует данной таблице истинности?

9. Какая логическая операция соответствует данной таблице истинности?

10. Какая логическая операция соответствует данной таблице истинности?

Итог урока:

    Вы познакомились с основными понятиями алгебры логики. Рассмотрели логические операции. Разобрали для каждой логической операции таблицу истинности и проиллюстрировали ЛО с помощью кругов Эйлера.

2. Выучить все определения в тетради из конспекта урока .

3. Подобрать высказывания для каждой логической операциипримера)

Относительно понятий и отношений между ними можно высказы­вать различные суждения. Языковой формой суждений являются повествовательные предложения. Предложения, используемые в математике, могут быть записаны как в словесной форме, так и в символической. Предложения могут нести верную или ложную информацию.

Высказыванием называется любое повествовательное предложение, которое может быть либо истинным, либо ложным.

Пример . Следующие предложения являются высказываниями:

1) Все студенты МГПУ – отличники (ложное высказывание),

2) На Кольском полуострове водятся крокодилы (ложное высказывание),

3) Диагонали прямоугольника равны (истинное высказывание),

4) Уравнение не имеет действительных корней (истинное высказывание),

5) Число 21 – четное (ложное высказывание).

Следующие предложения не являются высказываниями:

    Какая погода будет завтра?

    х – натуральное число,

    745 + 231 – 64.

Высказывания принято обозначать большими буквами латинского алфавита: А, В, С,…, Z .

«Истина» и «ложь» называются значениями истинности высказывания . Каждое высказывание либо истинно, либо ложно, одновременно быть и тем, и другим, оно не может.

Запись [ А ] = 1 означает, что высказываниеА истинно .

А запись [ А ] = 0 означает, что высказываниеА ложно .

Предложение
не является высказыванием, так как о нем невозможно сказать: истинно оно или ложно. При подстановке конкретных значений переменнойх оно обращается в высказывание: истинное или ложное.

Пример . Если
, то
– ложное высказывание, а если
, то
– истинное высказывание.

Предложение
называетсяпредикатом или высказывательной формой . Оно порождает множество высказываний одной и той же формы.

Предикатом называется предложение с одной или несколькими переменными, обращающееся в высказывание всякий раз при подстановке вместо переменных их значений.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, которые обозначаются: и т.д.

Пример . 1)
– одноместный предикат,

2) «Прямая х перпендикулярна прямой у » – двухместный предикат.

Также в предикатах переменные могут содержаться неявно. В предложениях: «Число четное», «две прямые пересекаются» переменных нет, но они подразумеваются: «Число х – четное», «две прямые х и у пересекаются».

При задании предиката указывают его область определения множество, из которого выбираются значения переменных, входящих в предикат.

Пример . Неравенство
можно рассматривать на множестве натуральных чисел, а можно считать, что значение переменной выбирается из множества действительных чисел. В первом случае областью определения неравенства
будет множество натуральных чисел, а во втором – множество действительных чисел.

Одноместным предикатом , заданным на множестве Х , называется предложение с переменной, которое обращается в высказывание при подстановке в него переменной из множества Х .

Множеством истинности одноместного предиката называется множество тех значений переменной из области ее определения, при подстановке которых предикат обращается в истинное высказывание.

Пример . Множеством истинности предиката
, заданном на множестве действительных чисел, будет промежуток
. Множество истинности предиката
, заданном на множестве целых неотрицательных чисел, состоит из одного числа 2.

Множество истинности двухместного предиката
состоит из всех таких пар
при подстановке которых в этот предикат получается истинное высказывание.

Пример . Пара
принадлежит множеству истинности предиката
, т.к.
– истинное высказывание, а пара
не принадлежит, т.к.
– ложное высказывание.

Высказывания и предикаты могут быть как простыми, так и сложными (составными). Сложные предложения образуются из простых с помощью логических связок – слов «и », «или », «если…, то », «тогда и только тогда, когда… ». С помощью частицы «не » или словосочетания «неверно, что » можно из данного предложения получить новое. Предложения, не являющиеся составными, называют элементарными .

Примеры . Составные предложения:

    Число 42 – четное и делится на 7. Образовано из двух элементарных предложений: Число 42 четное, число 42 делится на 7 и составлено с помощью логической связки «и ».

    Число х больше или равно 5. Образовано из двух элементарных предложений: Число х больше 5 и число х равно 5 и составлено с помощью логической связки «или ».

    Число 42 не делится на 5. Образовано из предложения: Число 42 делится на 5 с помощью частицы «не ».

Значение истинности элементарного высказывания определяют, исходя из его содержания с опорой на известные знания. Чтобы определить значение истинности составного высказывания, надо знать смысл логических связок, с помощью которых оно образовано из элементарных, и уметь выявлять логическую структуру высказывания.

Пример . Выявим логическую структуру предложения: «Если углы вертикальны, то они равны». Оно состоит из двух элементарных предложений: А – углы вертикальные, В – углы равны. Соединены они в одно составное предложение с помощью логической связки «если…, то… ». Данное составное предложение имеет логическую структуру (форму): «если А, то В ».

Выражение «для любого х » или «для всех х » или «для каждого х » называется квантором общности и обозначается
.


при помощи квантора общности, обозначается:
и читается: «Для любого значениях из множества Х имеет место
».

Выражение «существует х » или «для некоторых х » или «найдется такое х » называется квантором существования и обозначается
.

Высказывание, полученное из высказывания или предиката
при помощи квантора существования, обозначается:
и читается: «Для некоторыхх из множества Х имеет место
» или «Существует (найдется) такое значениех из Х , что имеет место
».

Кванторы общности и существования употребляются не только в математических выражениях, но и в повседневной речи.

Пример . Следующие высказывания содержат квантор общности:

а) Все стороны квадрата равны; б) Каждое целое число является действительным; в) В любом треугольнике медианы пересекаются в одной точке; г) У всех студентов есть зачетная книжка.

Следующие высказывания содержат квантор существования:

а) Существуют числа, кратные 5; б) Найдется такое натуральное число , что
; в) В некоторых студенческих группах учатся кандидаты в мастера спорта; г) Хотя бы один угол в треугольнике острый.

Высказывание
являетсяистинным
тождество, т.е. принимает истинные значения при подстановке в него любых значений переменной.

Пример . Высказывание
истинно.

Высказывание
ложно , если при некотором значении переменной х предикат

Пример . Высказывание
ложно, т.к. при
предикат
превращается в ложное высказывание.

Высказывание
являетсяистинным тогда и только тогда, когда предикат
не является тождественно ложным, т.е. при некотором значении переменнойх предикат

Пример . Высказывание
истинно, т.к. при
предикат
превращается в истинное высказывание.

Высказывание
ложно , если предикат
является противоречием, т.е. тождественно ложным высказыванием.

Пример . Высказывание
ложно, т.к. предикат
является тождественно ложным.

Пусть предложение А – высказывание. Если перед сказуемым данно­го предложения поставить частицу «не » либо перед всем предложением поставить слова «неверно, что », то получится новое предложение, кото­рое называется отрицанием данного и обозначается: А или (читают: «не А» или «неверно, что А »).

Отрицанием высказывания А называется высказыва­ние или А , которое ложно, когда высказывание А истинно, и истинно, когда высказывание А – ложно.

Таблица истинности отрицания:

Пример . Если высказывание А : «Вертикальные углы равны», то отрицание этого высказывания А : «Вертикальные углы не равны». Первое из этих высказываний истинное, а второе – ложное.

Для построения отрицания высказываний с кванторами надо:

    квантор общности заменить квантором существования или наоборот;

    высказывание заменить его отрицанием (поставить перед глаголом частицу «не »).

На языке математических символов это запишется так.

Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

13. Равносильные формулы.

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком « ». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А , В , С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

Закон противоречия

Закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

14. Формулы логики высказываний.

Виды формул классической логики высказываний – в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно» ;

2. Противоречия (тождественно-ложные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно» ;

3. Выполнимые формулы – такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества: ;

2. Закон противоречия: ;

3. Закон исключенного третьего: ;

4. Законы коммутативности и : , ;

5. Законы дистрибутивности относительно ,и наоборот: , ;

6. Закон удаления истинного члена конъюнкции: ;

7. Закон удаления ложного члена дизъюнкции: ;

8. Закон контрапозиции: ;

9. Законы взаимовыразимости пропозициональных связок: , , , , , .

Процедура разрешимости – метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации « ». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции « ». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием . Дизъюнктивная форма содержит только знаки дизъюнкции « ». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом . Во всех остальных случаях формула является выполнимой формулой .

15. Предикаты и операции над ними. Кванторы.

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А(х ), В(х , у ), С(х , у , z ).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х , состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицанием предиката А(х ), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А(х ) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А(х ) и В(х ) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А(х ) и В(х ) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А(х ). Обозначим через Т А множество истинности предиката А(х ), а через Т - множество истинности предиката . Тогда .

2. Конъюнкцией предикатов А(х ) и В(х х ) В(х х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А(х ) В(х ). Если обозначить множество истинности предиката А(х) через Т А, а множество истинности предиката В(х) через Т В и множество истинности предиката А(х) В(х) через , то

3. Дизъюнкцией предикатов А(х) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.



Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4.Импликацией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй – в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В(х ) с дополнением к множеству истинности предиката А(х ), т.е.

5. Эквиваленцией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения – высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят название квантор всеобщности. Обозначается .

Пусть А(х ) – определенный предикат, заданный на множестве Х. Под выражением А(х ) будем понимать высказывание истинное, когда А(х ) истинно для каждого элемента из множества Х, и ложное в противном случае.

Истинность высказываний с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их), достаточно привести контрпример.

16. Определение бинарного отношения между множествами А и В.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

17. Способы задания бинарных отношений.

Всякое подмножество декартова произведения A×B называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R- это подмножество множества A×B, то можно записать R⊆A×. Если же требуется указать, что (a, b) ∈ R, т. е. между элементами a ∈ A и b ∈ B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй - другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества A×B. Кружочками на сетке отмечены элементы отношения aRb, где a ∈ A и b ∈ B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств- в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

18. Рефлексивность бинарного отношения. Пример.

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю - дугу (х, х).

Если это условие не выполнено ни для какого элемента множества, то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли - нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как: .

Если условие рефлексивности выполнено не для всех элементов множества, говорят, что отношение нерефлексивно.

 
Статьи по теме:
Ликёр Шеридан (Sheridans) Приготовить ликер шеридан
Ликер "Шериданс" известен во всем мире с 1994 года. Элитный алкоголь в оригинальной двойной бутылке произвел настоящий фурор. Двухцветный продукт, один из которых состоит из сливочного виски, а второй из кофейного, никого не оставляет равнодушным. Ликер S
Значение птицы при гадании
Петух в гадании на воске в большинстве случаев является благоприятным символом. Он свидетельствует о благополучии человека, который гадает, о гармонии и взаимопонимании в его семье и о доверительных взаимоотношениях со своей второй половинкой. Петух также
Рыба, тушенная в майонезе
Очень люблю жареную рыбку. Но хоть и получаю удовольствие от ее вкуса, все-таки есть ее только в жареном виде, как-то поднадоело. У меня возник естественный вопрос: "Как же еще можно приготовить рыбу?".В кулинарном искусстве я не сильна, поэтому за совета
Программа переселения из ветхого и аварийного жилья
Здравствуйте. Моя мама была зарегистрирована по адресу собственника жилья (сына и там зарегистрирован её внук). Они признаны разными семьями. Своего жилья она не имеет, признана малоимущей, имеет право как инвалид на дополнительную жилую площадь и...