Определение момента инерции. Момент силы и момент инерции Чему равен момент инерции любого тела

Системы на квадраты их расстояний до оси:

  • m i - масса i -й точки,
  • r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении .

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы , формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра
Сплошной цилиндр длины l , радиуса r и массы m
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0), получим формулу для момента инерции цилиндра (диска):

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Интегрируя, получим

Сплошной однородный шар

Вывод формулы

Разобъём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции сферы найдём интегрированием:

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобъём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

Интегрируя, получим

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l /2. По теореме Штейнера новый момент инерции будет равен

Безразмерные моменты инерции планет и их спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра.

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции - геометрическая характеристика сечения вида

где - расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси .

Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

Единица измерения СИ - м 4 . В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см 4 .

Из него выражается момент сопротивления сечения:

.
Геометрические моменты инерции некоторых фигур
Прямоугольника высотой и шириной :
Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно
Круга диаметром

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) - это величина

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы :

(1),

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

,
.

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
,
где -

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J .

2. Физический смысл момента инерции. Произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил, приложенных к телу. Сравните. Вращательное движение. Поступательное движение. Момент инерции представляет собой меру инерции тела во вращательном движении

Например, момент инерции диска относительно оси О" в соответствии с теоремой Штейнера:

Теорема Штейнера: Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим .

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) : . Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:.

угловую скорость как вектор, величина которого численно равна угловой скорости, и направленный вдоль оси вращения, причем, если смотреть с конца этого вектора, то вращение направлено против часовой стрелки . Исторически сложилось 2 , что положительным направлением вращения считается вращение «против часовой стрелки», хотя, конечно, выбор этого направления абсолютно условен.  Для определения направления вектора угловой скорости можно также воспользоваться «правилом буравчика» (которое также называется «правилом правого винта») − если направление движения ручки буравчика (или штопора) совместить с направлением вращения, то направление движения всего буравчика совпадет с направлением вектора угловой скорости.

Вращающееся тело (колесо мотоцикла) стремиться сохранять положение оси вращения в пространстве неизменным.(гироскопический эффект) Поэтому возможно движение на 2-х колёсах, но не возможно стояние на двух колёсах Этот эфект используется в корабельных и танковых системах наведения орудий. (корабль качается на волнах, а орудие смотрит в одну точку) В навигации и др.

Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.

Главное свойство прецессии - безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила - гравитация Земли - действует постоянно.

19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бирнулли .

Идеальной жидкостью назвается воображаемая несжимаемая жидкость , в которой отсутствуют вязкость, внутреннее трение и теплопроводность . Так как в ней отсуствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.

вязкая жидкость характеризуется наличием сил трения, которые возникают при ее движении. вязкой наз. жидкость , в которой при движении кроме нормальных напряжений наблюдаются и касательные напряжения

Рассматриваемые в Г. ур-ния относит. равновесия несжимаемой жидкости в поле сил тяжести (относительно стенок сосуда, совершающего движение по нек-рому известному закону, напр. поступательное или вращательное) дают возможность решать задачи о форме свободной поверхности и о плескании жидкости в движущихся сосудах - в цистернах для перевозки жидкостей, топливных баках самолётов и ракет и т. п., а также в условиях частичной или полной невесомости на космич. летат. аппаратах. При определении формы свободной поверхности жидкости, заключённой в сосуде, кроме сил гидростатич. давления, сил инерции и силы тяжести необходимо учитывать поверхностное натяжение жидкости. В случае вращения сосуда вокруг вертик. оси с пост. угл. скоростью свободная поверхность принимает форму параболоида вращения, а в сосуде, движущемся параллельно горизонтальной плоскости поступательно и прямолинейно с пост. ускорением а , свободной поверхностью жидкости является плоскость, наклонённая к горизонтальной плоскости под углом

МОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела m i , на квадраты их расстояний r i до точки, оси или плоскости:

Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.

Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ОСЕЙ, ПЛОСКОСТЕЙ И НАЧАЛА ДЕКАРТОВЫХ КООРДИНАТ.

Момент инерции относительно начала координат (полярный момент инерции):

СВЯЗЬ МЕЖДУ ОСЕВЫМИ, ПЛОСКОСТНЫМИ И ПОЛЯРНЫМ МОМЕНТАМИ ИНЕРЦИИ:

Значения осевых моментов инерции некоторых геометрических тел приведены в табл. 1.

Таблица 1. Момент инерции некоторых тел
Фигура или тело

При с→0 получается прямоугольная пластина

ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ ПРИ ПЕРЕМЕНЕ ОСЕЙ

Момент инерции I u 1 относительно оси u 1 , параллельной данной оси u (рис. 1):

где I u - момент инерции тела относительно оси u; l(l 1) - расстояние от оси u (от оси u 1) до параллельной им оси u с, проходящей через центр масс тела; а - расстояние между осями u и u 1 .

Рисунок 1.

Если ось u центральная (l=0), то

т. е. для любой группы параллельных осей момент инерции относительно центральной оси наименьший.

Момент инерции I u относительно оси u, составляющей углы α, β, γ с осями декартовых координат х, у, z (рис. 2):

Рисунок 2.

Оси х, у, z главные, если

Момент инерции относительно оси u, составляющей углы α, β, γ c главными осями инерции х, у, z:

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ПРИ ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ ОСЕЙ:

где - центробежный момент инерции относительно центральных осей х с, y с, параллельных осям х, у; М - масса тела; x с, y с - координаты центра масс в системе осей х, у.

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНОГО МОМЕНТА ИНЕРЦИИ ПРИ ПОВОРОТЕ ОСЕЙ x, y ВОКРУГ ОСИ z НА УГОЛ α В ПОЛОЖЕНИЕ x 1 y 1 (рис. 3):

Рисунок 3.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ. Ось материальной симметрии тела - главная ось инерции тела.

Если плоскость xОz является плоскостью материальной симметрии тела, то любая из осей y - главная ось инерции тела.

Если положение одной из главных осей z гл известно, то положение двух других осей x гл и y гл определяется поворотом осей х и у вокруг оси z гл на угол φ (рис. 3):

ЭЛЛИПСОИД И ПАРАЛЛЕЛЕПИПЕД ИНЕРЦИИ. Эллипсоидом инерции называется эллипсоид, оси симметрии которого совпадают с главными центральными осями тела x гл, y гл, z гл, а полуоси а х, а у, а z равны соответственно:

где r уО z , r х Oz , r xOy - радиусы инерции тела относительно главных плоскостей инерции.

Параллелепипедом инерции называется параллелепипед, описанный вокруг эллипсоида инерции и имеющий с ним общие оси симметрии (рис. 4).

Рисунок 4.

РЕДУЦИРОВАНИЕ (ЗАМЕНА С ЦЕЛЬЮ УПРОЩЕНИЯ РАСЧЕТА) ТВЕРДОГО ТЕЛА СОСРЕДОТОЧЕННЫМИ МАССАМИ . При вычислении осевых, плоскостных, центробежных и полярных моментов инерции тело массой М можно редуцировать восемью сосредоточенными массами М/8, расположенными в вершинах параллелепипеда инерции. Моменты инерции относительно любых осей, плоскостей, полюсов вычисляются по координатам вершин параллелепипеда инерции x i , y i , z i (i=1, 2, ..., 8) по формулам:

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ

1. Определение моментов инерции тел вращения с использованием дифференциального уравнения вращения - см. формулы ("Вращательное движение твердого тела") .

Исследуемое тело закрепляется на горизонтальной оси х, совпадающей с его осью симметрии, и приводится во вращение вокруг нее с помощью груза Р, прикрепленного к гибкой нити, навернутой на исследуемое тело (рис. 5), при этом замеряется время t опускания груза на высоту h. Для исключения влияния трения в точках закрепления тела на оси х опыт производится несколько раз при разных значениях веса груза Р.

Рисунок 5.

При двух опытах с грузами Р 1 и Р 2

2. Экспериментальное определение моментов инерции тел посредством изучения колебаний физического маятника (см. 2.8.3) .

Исследуемое тело закрепляют на горизонтальной оси х (нецентральной) и замеряют, период малых колебаний около этой оси Т. Момент инерции относительно оси х определится по формуле

где Р - вес тела; l 0 - расстояние от оси вращения до центра масс С тела.

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ СИСТЕМЫ ТЕЛ

С ПОМОЩЬЮ МАЯТНИКА ОБЕРБЕКА.

Цель работы – определить момент инерции системы четырех одинаковых грузов массы m двумя способами: 1) экспериментально с помощью маятника Обербека, 2) теоретически, считая грузы материальными точками. Сравнить полученные результаты.

Приборы и принадлежности : маятник Обербека, секундомер, масштабная линейка, набор грузов, штангенциркуль.

Теоретическое введение

Момент инерции – физическая величина, характеризующая инертность тела при вращательном движении.

Моментом инерции материальной точки относительно оси вращения называется произведение массы этой точки на квадрат ее расстояния до оси (см. рис. 1)

Моментом инерции произвольного тела относительно оси называется сумма моментов инерции материальных точек из которых состоит тело, относительно этой оси (см. рис. 2)

Для однородных тел правильной геометрической формы можно заменить суммирование интегрированием.

,

где dm = ρdV (ρ – плотность вещества, dV – элемент объема)

Таким образом получены формулы некоторых тел массой m относительно оси, проходящей через центр тяжести:

а) стержня длиной относительно оси, перпендикулярной стержню

,

б) обруча (а также тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча и проходящей через его центр тяжести (совпадающей с осью цилиндра)

,

где – радиус обруча (цилиндра)

в) диска (сплошного цилиндра) относительно оси, перпендикулярной плоскости диска и проходящей через его центр тяжести (совпадающей с осью цилиндра)


,

где – радиус диска (цилиндра)

г) шара радиуса R относительно оси произвольного направления, проходящей через его центр тяжести

.

Момент инерции тела зависит: 1) от формы и размеров тела, 2) от массы и распределения масс, 3) от положения оси относительно тела.

Теорема Штейнера о параллельных осях записывается как:

,

где – момент инерции тела массой m относительно произвольной оси, – момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно произвольной оси, – расстояние между осями.

Описание установки.

Маятник Обербека представляет собой крестовину, состоящую из шкива и четырех равноплечих стержней, закрепленных на горизонтальной оси (см. рис.2). На стержнях на равных расстояниях от оси вращения насажены четыре одинаковых груза массы m каждый. При помощи груза m 1 , прикрепленного к концу шнура, намотанного на один из шкивов, вся система может быть приведена во вращательное движение. Для отсчета высоты падения h груза m 1 имеется вертикальная шкала.

Запишем второй закон Ньютона для падающего груза в векторной форме

(1)

где
- сила тяжести;
- сила натяжения шнура (см. рис. 1);

- линейное ускорение, с которым падает груз m 1 вниз.

Принимая направление движения груза за положительное, перепишем уравнение (I) в скалярной форме

(2)

откуда получим выражение для силы натяжения шнура

Линейное ускорение a находится из формулы пути равноускоренного движения без начальной скорости

(4)

где h – высота падения груза m 1 ; t – время падения.

Сила натяжения нити F нат вызывает ускоренное вращение крестовины. Основной закон вращательного движения крестовины с учетом сил трения запишется так:

M M тр = I i , (5)

где М – момент силы натяжения; M тр - момент сил трения; I - момент инерции крестовины; i - угловое ускорение, с которым вращается крестовина. Величина момента сил трения M тр по сравнению с величиной вращающего момента М невелика, и, следовательно, ею можно пренебречь.

Из уравнения (5) с учетом сделанного замечания получаем оконча-тельную формулу для расчета момента инерции крестовины

(6)

где r - радиус шкива. Угловое ускорение i определяется по формуле

(7)

Подставляя (3) и (7) в (6), получаем окончательную формулу для расчета момента инерции крестовины

(8)

Порядок выполнения работы .

Экспериментальное определение момента инерции системы 4 х грузов.

1. Снять со стержней грузы m .

2. Намотать в один слой шнур на шкив, установив груз m 1 на заранее выбран-ной высоте h . Отпустив крестовину, замерить время падения t о груза с помо-щью секундомера. Опыт повторить пять раз (при одной и той же высоте паде-ния h ).

3. Закрепить на концах стержней грузы m .

4. Выполнить операции, указанные в пункте 2, измеряя секундомером время падения t . Опыт повторить пять раз.

5. С помощью штангенциркуля измерить диаметр шкива d в пяти разных положениях.

6. Результаты измерений занести в таблицу. Найти приближенные значения и по методу Стьюдента оценить абсолютные погрешности измерения величин t о, t и d .

а) крестовина без грузов (a о ),

б) крестовина с грузами ).

8. По формуле (8) вычислить момент инерции крестовины без грузов (I o ) и с грузами (I), используя приближенные значения m 1, R , g и полученные значения а и а о.

    Вычислить погрешности измерений по формулам:

(9)

(10)

Таблица 1

Результаты измерений и вычислений

Часть II .

1. Теоретически найти момент инерции системы 4 х грузов массы m, находящихся на расстоянии R от оси вращения (считая грузы материальными точками)

(11)

2. Сравнить результаты эксперимента и расчетов. Вычисть относительную погрешность

(12)

и сделать вывод о том, как велико расхождение полученных результатов.

Контрольные вопросы.

1. Что называется моментом инерции материальной точки и произвольного тела?

2. От чего зависит момент инерции тела относительно оси вращения?

3. Приведите примеры формул момента инерции тел. Как они получены?

4. Теорема Штейнера о параллельных осях и ее практическое использование.

5. Вывод формулы для расчета момента инерции крестовины с грузами и без грузов.

Литература

1. Савельев И. В. Курс общей физики: Учебн. пособие для втузов: в 3 т. Т.1: Механика. Молекулярная физика. - 3-е изд., испр. - М.: Наука, 1986. – 432с.

2. Детлаф А. А. , Яворский Б. М. Курс физики: Учебн. пособие для втузов. - М.: Высшая школа, 1989. - 607 с. - предм. указ.: с. 588-603.

3. Зисман Г. А., Тодес О. М.. Курс общей физики для втузов: в 3 т. Т. 1: Механика, молекулярная физика, колебания и волны - 4-е изд., стереотип. - М.: Наука, 1974. - 340 с.

4. Методические указания к выполнению лабораторных работ по разделу “Механика“.- Иваново, ИХТИ, 1989 г. (под редакцией Биргера Б.Н.).

Рассмотрим материальную точку массой m, которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инерции J материальной точки относительно оси называется скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инерции системы N материальных точек будет равен сумме моментов инерции отдельных точек:

Рис. 26.

К определению момента инерции точки.

Если масса распределена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объемы dv, каждый из которых обладает массой dm.

В результате получается следующее выражение:

Для однородного по объему тела плотность ρ постоянна, и записав элементарную массу в виде:

dm = ρdv, преобразуем формулу (70) следующим образом:

Размерность момента инерции - кг*м 2 .

Момент инерции тела является мерой инертности тела во вращательном движении, подобно тому, как масса тела является мерой его инертности при поступательном движении.

Момент инерции — это мера инертных свойств твердого тела при вращательном движении, зависящая от распределения массы относительно оси вращения. Иными словами, момент инерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инерции достаточно прост. Ниже приведены моменты инерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска :

Момент инерции шара радиуса R :

Момент инерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера :

Момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инерции стержня

Согласно теореме Штейнера, момент инерции стержня относительно оси O′O′ равен моменту инерции относительно оси OO плюс md 2 . Отсюда получаем:


Очевидно: момент инерции неодинаков относительно разных осей, и поэтому, решая задачи на динамику вращательного движения, момент инерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, например, при конструировании технических устройств, содержащих вращающиеся детали (на железнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инерции этих деталей. При сложной форме тела теоретический расчет его момента инерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инерции нестандартной детали опытным путем.

Момент силы F относительно точки O

 
Статьи по теме:
Ликёр Шеридан (Sheridans) Приготовить ликер шеридан
Ликер "Шериданс" известен во всем мире с 1994 года. Элитный алкоголь в оригинальной двойной бутылке произвел настоящий фурор. Двухцветный продукт, один из которых состоит из сливочного виски, а второй из кофейного, никого не оставляет равнодушным. Ликер S
Значение птицы при гадании
Петух в гадании на воске в большинстве случаев является благоприятным символом. Он свидетельствует о благополучии человека, который гадает, о гармонии и взаимопонимании в его семье и о доверительных взаимоотношениях со своей второй половинкой. Петух также
Рыба, тушенная в майонезе
Очень люблю жареную рыбку. Но хоть и получаю удовольствие от ее вкуса, все-таки есть ее только в жареном виде, как-то поднадоело. У меня возник естественный вопрос: "Как же еще можно приготовить рыбу?".В кулинарном искусстве я не сильна, поэтому за совета
Программа переселения из ветхого и аварийного жилья
Здравствуйте. Моя мама была зарегистрирована по адресу собственника жилья (сына и там зарегистрирован её внук). Они признаны разными семьями. Своего жилья она не имеет, признана малоимущей, имеет право как инвалид на дополнительную жилую площадь и...