Самое маленькое простое число. Простые числа: обыденность неразгаданной загадки

Простым числом является натуральное число, которое делится только на себя и на единицу.

Остальные числа называют составными.

Простые натуральные числа

Но не все натуральные числа являются простыми числами.

Простыми натуральными числами являются лишь те из них, которые делятся только на себя и на единицу.

Примеры простых чисел:

2; 3; 5; 7; 11; 13;...

Простые целые числа

Из следует, что простыми числами являются только натуральные числа.

Это значит, что простые числа обязательно являются натуральными.

Но все натуральные числа являются одновременно целыми числами.

Таким образом, все простые числа являются целыми.

Примеры простых чисел:

2; 3; 5; 7; 11; 13; 17; 19; 23;...

Четные простые числа

Имеется только одно четное простое число - это число два.

Все остальные простые числа нечетные.

А почему не может быть простым числом четное число больше двух?

А потому, что любое четное число больше двух будет делиться на себя, не единицу и на два, т.е такое число всегда будет иметь три делителя, а возможно и больше.

  • Перевод

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 × 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

π(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

π(n) = ∫ 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ≤ n ≤ 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ≤ n ≤ 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

Теги: Добавить метки

Как было сделано это наблюдение, красочно рассказывает М. Гарднер в «Математических досугах» (М., «Мир», 1972). Вот этот кусочек (с. 413–417):

В зависимости от расположения целых чисел простые числа могут образовывать тот или иной узор. Однажды математику Станиславу М. Уламу пришлось присутствовать на одном очень длинном и очень скучном, по его словам, докладе. Чтобы как-то развлечься, он начертил на листке бумаги вертикальные и горизонтальные линии и хотел было заняться составлением шахматных этюдов, но потом передумал и начал нумеровать пересечения, поставив в центре 1 и двигаясь по спирали против часовой стрелки. Без всякой задней мысли он обводил все простые числа кружками. Вскоре, к его удивлению, кружки с поразительным упорством стали выстраиваться вдоль прямых. На рис. 203 показано, как выглядела спираль со ста первыми числами (от 1 до 100). [ Это усечённая на два оборота версия вышеприведённого рисунка 1, поэтому я его не привожу. — E.G.A. ] Для удобства числа вписаны в клетки, а не стоят на пересечении линий.

Вблизи центра выстраивания простых чисел вдоль прямых ещё можно было ожидать, поскольку плотность простых чисел вначале велика и все они, кроме числа 2, нечётны. Если клетки шахматной доски перенумеровать по спирали, то все нечётные числа попадут на клетки одного и того же цвета. Взяв 17 пешек (соответствующих 17 простым числам, не превосходящим числа 64) и расставив их наугад на клетки одного цвета, вы обнаружите, что пешки выстроились вдоль диагональных прямых. Однако не было оснований ожидать, что и в области больших чисел, где плотность простых чисел значительно меньше, те также будут выстраиваться вдоль прямых. Улама заинтересовало, как же будет выглядеть его спираль, если её продолжить до нескольких тысяч простых чисел.

В вычислительном отделе Лос-Аламосской лаборатории, где работал Улам, имелась магнитная лента, на которой было записано 90 млн. простых чисел. Улам вместе с Майроном Л. Стейном и Марком Б. Уэллсом составили программу для вычислительной машины MANIAC, позволившую нанести на спираль последовательные целые числа от 1 до 65 000. Получившийся при этом узор (иногда его называют «скатертью Улама») изображён на рис. 204. [ А это уже расширенная версия вышеприведённого рисунка 2, поэтому я его привожу. — E.G.A. ] Обратите внимание на то, что даже у края картины простые числа продолжают послушно укладываться на прямые.

Прежде всего бросаются в глаза скопления простых чисел на диагоналях, но вполне ощутима и другая тенденция простых чисел — выстраиваться вдоль вертикальных и горизонтальных линий, на которых все клетки, свободные от простых чисел, заняты нечётными числами. Простые числа, попадающие на прямые, продолженные за отрезок, который содержит последовательные числа, лежащие на каком-то витке спирали, можно считать значениями некоторых квадратичных выражений, начинающихся с члена 4x ². Например, последовательность простых чисел 5, 19, 41, 71, стоящих на одной из диагоналей на рис. 204, — это значения, принимаемые квадратичным трёхчленом 4x ² + 10x + 5 при x , равном 0, 1, 2 и 3. Из рис. 204 видно, что квадратичные выражения, принимающие простые значения, бывают «бедными» (дающими мало простых чисел) и «богатыми» и что на «богатых» прямых наблюдаются целые «россыпи» простых чисел.

Начав спираль не с 1, а с какого-нибудь другого числа, мы получим другие квадратичные выражения для простых чисел, выстраивающихся вдоль прямых. Рассмотрим спираль, начинающуюся с числа 17 (рис. 205, слева). Числа вдоль главной диагонали, идущей с «северо-востока» на «юго-запад», порождаются квадратичным трёхчленом 4x ² + 2x + 17. Подставляя положительные значения x , мы получаем нижнюю половину диагонали, подставляя отрицательные значения — верхнюю. Если рассмотреть всю диагональ и переставить простые числа в порядке возрастания, то окажется (и это приятный сюрприз), что все числа описываются более простой формулой x ² + x + 17. Это одна из многих «производящих» формул для простых чисел, открытых ещё в XVIII веке великим математиком Леонардом Эйлером. При x , принимающем значения от 0 до 15, она даёт только простые числа. Следовательно, продолжив диагональ до тех пор, пока она не заполнит квадрат 16×1 6, мы увидим, что вся диагональ заполнена простыми числами.

Самый знаменитый квадратичный трёхчлен Эйлера, производящий простые числа, x ² + x + 41, получится, если начать спираль с числа 41 (рис. 205, справа). Этот трёхчлен позволяет получить 40 последовательных простых чисел, заполняющих всю диагональ квадрата 40×4 0! Давно известно, что из 2398 первых значений, принимаемых этим трёхчленом, ровно половина простые. Перебрав все значения знаменитого трёхчлена, не превышающие 10 000 000, Улам, Стейн и Уэллс обнаружили, что доля простых чисел среди них составляет 0,475... . Математикам очень бы хотелось открыть формулу, позволяющую получать при каждом целом x различные простые числа, но пока такой формулы обнаружить не удалось. Может быть, её и не существует.

33 32 31 30 29
34 21 20 19 28
35 22 17 18 27
36 23 24 25 26
37 38 39 40 41
57 56 55 54 53
58 45 44 43 52
59 46 41 42 51
60 47 48 49 50
61 62 63 64 65
Рис. 205 . Диагонали, заполненные простыми числами, порождаемыми квадратичными трёхчленами x ² + x + 17 (слева) и x ² + x + 41 (справа).

Спираль Улама подняла много новых вопросов, относящихся к закономерностям и случайностям в распределении простых чисел. Существуют ли прямые, на которых лежит бесконечно много простых чисел? Какова максимальная плотность распределения простых чисел вдоль прямых? Существенно ли различаются плотности распределения простых чисел в квадрантах «скатерти» Улама, если считать, что она продолжается неограниченно? Спираль Улама — забава, но её следует принимать всерьёз.

  • Перевод

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 × 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

π(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

π(n) = ∫ 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ≤ n ≤ 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ≤ n ≤ 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

 
Статьи по теме:
Ликёр Шеридан (Sheridans) Приготовить ликер шеридан
Ликер "Шериданс" известен во всем мире с 1994 года. Элитный алкоголь в оригинальной двойной бутылке произвел настоящий фурор. Двухцветный продукт, один из которых состоит из сливочного виски, а второй из кофейного, никого не оставляет равнодушным. Ликер S
Значение птицы при гадании
Петух в гадании на воске в большинстве случаев является благоприятным символом. Он свидетельствует о благополучии человека, который гадает, о гармонии и взаимопонимании в его семье и о доверительных взаимоотношениях со своей второй половинкой. Петух также
Рыба, тушенная в майонезе
Очень люблю жареную рыбку. Но хоть и получаю удовольствие от ее вкуса, все-таки есть ее только в жареном виде, как-то поднадоело. У меня возник естественный вопрос: "Как же еще можно приготовить рыбу?".В кулинарном искусстве я не сильна, поэтому за совета
Программа переселения из ветхого и аварийного жилья
Здравствуйте. Моя мама была зарегистрирована по адресу собственника жилья (сына и там зарегистрирован её внук). Они признаны разными семьями. Своего жилья она не имеет, признана малоимущей, имеет право как инвалид на дополнительную жилую площадь и...