Влияние различных факторов на пластичность и сопротивление деформированию. Факторы, влияющие на пластические свойства металлов

Пластичность зависит от природы вещества (его химического состава и структурного строения), температуры, скорости деформации, степени наклепа и от условий напряженного состояния в момент деформации.

Влияние природных свойств металла. Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности. Примеси замещения меньше снижают пластичность, чем примеси внедрения.

Пластичность зависит от структурного состояния металла, особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.

Влияние температуры . При очень низких температурах, близких к абсолютному нулю, все металлы хрупкие. Низкую пластичность необходимо учитывать при изготовлении конструкций, работающих при низких температурах.

С повышением температуры пластичность малоуглеродистых и среднеуглеродистых сталей повышается. Это объясняется тем, что происходит исправление нарушений границ зерен. Но повышение пластичности происходит не монотонно. В интервалах некоторых температур наблюдается «провал» пластичности. Так для чистого железа обнаруживается хрупкость при температуре 900-1000 о С. Это объясняется фазовыми превращениями в металле. Снижение пластичности при температуре 300-400 о С называется синеломкостью , при температуре 850-1000 о С – красноломкостью .

Высоколегированные стали имеют большую пластичность в холодном состоянии. Для шарикоподшипниковых сталей пластичность практически не зависит от температуры. Отдельные сплавы могут иметь интервал повышенной пластичности.

Когда температура приближается к температуре плавления, пластичность резко снижается из-за перегрева и пережога. Перегрев выражается в чрезмерном росте зерен предварительно деформированного металла. Перегрев исправляется нагревом до определенной температуры и последующим быстрым охлаждением. Пережог - неисправимый брак. Он заключается в окислении границ крупных зерен. При этом металл хрупко разрушается.

Влияние наклепа и скорости деформации . Наклеп понижает пластичность металлов.

Влияние скорости деформации на пластичность двояко. При горячей обработке давлением повышение скорости ведет к снижении пластичности, т.к. наклеп опережает рекристаллизацию. При холодной обработке повышение скорости деформации чаще всего повышает пластичность из-за разогрева металла.

Влияние характера напряженного состояния. Характер напряженного состояния оказывает большое влияние на пластичность. Возрастание роли напряжений сжатия в общей схеме напряженного состояния увеличивает пластичность. В условиях резко выраженного всестороннего сжатия возможно деформировать даже очень хрупкие материалы. Схема всестороннего сжатия является наиболее благоприятной для проявления пластических свойств, так как при этом затрудняется межзеренная деформация и вся деформация протекает за счет внутризеренной. Возрастание роли напряжений растяжения приводит к снижению пластичности. В условиях всестороннего растяжения с малой разностью главных напряжений, когда касательные напряжения малы для начала пластической деформации, даже самые пластичные материалы хрупко разрушаются.

Оценить пластичность можно через . Если увеличивается, то и пластичность увеличивается, и наоборот. Опыт показывает, что изменяя напряженное состояние, можно все твердые тела сделать пластичными или хрупкими. Поэтому пластичность считают не свойством, а особым состоянием вещества .

Условием пластичности называется условие перехода упругой деформации в пластическую , т.е. оно определяет точку перегиба на диаграмме растяжение-сжатие.

В линейном напряженном состоянии, например при растяжении образца, пластическая деформация начинается тогда, когда нормальное напряжение достигает предела текучести. То есть для линейного напряженного состояния условие пластичности имеет вид: .

Сен-Венан на основании этих опытов вывел условие пластичности. Он установил, что пластическая деформация наступает тогда, когда максимальное касательное напряжение достигает величины, равной половине предела текучести, т.е. . Но . Отсюда получаем .

Таким образом, условие пластичности Сен-Венана имеет вид:

Пластическая деформация наступает тогда, когда максимальная разность главных нормальных напряжений достигает величины сопротивления деформации, т.е.

Процессы обработки металлов давлением основаны на способности металлических материалов под действием приложенной нагрузки переходить в пластическое состояние. Поэтому для наиболее рационального выбора технологического процесса необходимо знать факторы, с помощью которых можно управлять пластичностью.

Пластичность - способность металла под действием нагрузки менять свою форму без разрушения и сохранять ее после снятия нагрузки.

Основными факторами, влияющими на пластичность металлов при обработке давлением, являются:

  • состав и структура деформируемого металла;
  • схема напряженного состояния при деформации;
  • температура деформации;
  • неравномерность деформации;
  • скорость деформации;
  • степень деформации;
  • режим термической обработки.

Рассмотрим влияние каждого из перечисленных факторов.

Состав и структура деформируемого металла. Как правило, максимальную пластичность имеют чистые металлы. Однако из-за невысокой прочности в чистом виде металлы для получения изделий почти не используются. Поэтому в металлы с целью создания в них комплекса требуемых свойств добавляют другие химические элементы (легирующие добавки). Кроме того, в металлах обычно присутствуют примеси - химические элементы, которые попадают в металл при извлечении из руды, плавлении, нагревании и т. д. Процесс очистки от примесей часто сложен или экономически невыгоден, поэтому их содержание в сплавах обычно ограничивают и фиксируют их допустимое содержание в марке соответствующего сплава. В сталях, например, резко снижают пластичность такие примеси, как Бп, РЬ, БЬ, Б, Р, Н, О и др. Они почти не растворяются в железе, располагаются по границам зерен, ослабляя связь между ними. Кроме того, температуры плавления этих элементов и их эвтектических соединений с железом значительно ниже, чем у самого железа. Поэтому при горячей деформации содержание указанных примесей выше допустимых пределов из-за расплавления может привести к полной потере пластичности стали. Так, повышенное содержание серы в стали вызывает при горячей обработке давлением возникновение трещин. Это явление называют «красноломкостью». Следует учитывать, что различие между легирующим элементом и вредной примесью достаточно условно. Даже для одного металла, составляющего основу сплава, один и тот же элемент может выступать в сплаве как в качестве легирующего элемента, так и являться примесью. Например, в ряде деформируемых алюминиевых сплавов кремний вреден, и его содержание ограничивают, однако существуют алюминиевые сплавы, в которых кремний является основной легирующей добавкой, например, литейные сплавы силумины.

Большое влияние на пластичность сплавов оказывает их структура. Наибольшей пластичностью среди сплавов обычно отличаются твердые растворы. Неоднородность (гетерогенность) структуры сплавов приводит к снижению пластичности. При одинаковом химическом составе однофазный сплав пластичнее двухфазного, так как в двухфазном сплаве фазы имеют разные механические свойства и деформация протекает неравномерно. Мелкозернистый материал пластичнее крупнозернистого, а деформированная заготовка пластичнее слитка, так как литая структура последнего более грубая, неоднородная по химическому составу, имеет включения и другие дефекты литейного происхождения.

Схема напряженного состояния при деформации. Установлено, что металлические материалы при изменении условий деформирования могут переходить из хрупкого состояния в пластичное и наоборот. Поэтому правильнее считать, что в природе не существует тел с постоянным уровнем свойств, а есть хрупкое и пластичное состояния вещества, определяемые условиями нагружения при деформировании. При этом увеличение доли сжимающих напряжений при деформировании повышает пластичность обрабатываемого металла. Наибольшую пластичность металлические материалы проявляют при всестороннем сжатии. В этом случае затрудняются межзеренные перемещения, и вся деформация осуществляется за счет внутризеренного перемещения дислокаций. С появлением в схеме растягивающих напряжений пластичность снижается. Самую низкую пластичность металлы имеют при всестороннем растяжении. В технологических процессах обработки металлов давлением, за редким исключением, такой схемы напряженного состояния стараются избегать.

Температура деформации. Минимальная пластичность металлов наблюдается при температурах близких к абсолютному нулю по шкале Кельвина из-за низкой тепловой подвижности атомов. Приблизительно в интервале температур от 0 до (0,2-0,25)Г ш „ где Г пл - температура плавления по абсолютной шкале, деформацию называют холодной. При этих температурах восстановительные процессы в металлах, такие как возврат, можно не учитывать. С повышением температуры пластичность металлов увеличивается. При этом деформация металла при повышенных температурах характеризуется одновременным протеканием процессов упрочнения и разупрочнения. Восстановительными, уменьшающими плотность дислокаций во время горячей деформации, и приводящими к снижению прочности процессами, могут являться только возврат или возврат и рекристаллизация. Процессы разупрочнения во время горячей деформации аналогичны процессам разупрочнения при отжиге после холодной деформации. Так, при возврате плотность дислокаций уменьшается в результате увеличения их подвижности и сопровождается выстраиванием дислокаций в стенки (полигонизация), а при рекристаллизации происходит вытеснение дислокаций мигрирующими высокоугловыми границами. Так как восстановительные процессы, идущие в процессе деформации, имеют свои особенности, то правильнее пользоваться терминами динамический возврат (в том

числе, динамическая полигонизация ) и динамическая рекристаллизация, в отличие от статических процессов возврата и рекристаллизации, протекающих при отжиге после деформации. Для чистых металлов возврат проявляется при температурах превышающих (0,25 - 0,30)Г ПЛ. Присутствие примесей в металле затрудняет движение дислокаций и увеличивает температуру возврата. Протекание возврата в процессе деформации уменьшает сопротивление деформации металла и увеличивает его пластичность, но при этом упрочнение металла все равно наблюдается, хотя интенсивность его меньше, чем при холодной деформации.

Процесс рекристаллизации, согласно формуле А. А. Бочвара, для чистых металлов начинается с температуры приблизительно 0,4Г 11Л. Примеси повышают эту температуру. Динамическая рекристаллизация отличается от статической тем, что появившиеся рскристаллизованные зерна с низкой плотностью дислокации во время своего роста постепенно наклепываются, так как из-за продолжающейся деформации в них повышается плотность дислокаций. Участки, рекристаллизовавшисся в первую очередь, начинают наклепываться раньше, и в них быстрее достигается критическая плотность дислокаций, необходимая для зарождения новых рек-ристаллизованных зерен, которые затем наклепываются, и т. д. Многократное повторение циклов динамической рекристаллизации и наклепа рскристаллизованных зерен характеризуется неизменным средним размером зерна. Графики зависимости истинного напряжения от истинной деформации, представленные, как для динамического возврата, так и для динамической рекристаллизации (рис. 2.6), характеризуются после стадии деформационного упрочнения стадией установившегося течения.

При выборе режима деформации необходимо учитывать, что при температурах, близких к температуре плавления металла, возможны перегрев или пережог. Первое явление заключается в том, что, достигнув максимальных значений в области собирательной рекристаллизации, пластичность начинает плавно снижаться из-за далеко зашедшей собирательной рекристаллизации, приводящей на этой стадии к образованию чрезмерно крупного зерна. При очень высоких температурах могут резко снизиться и прочность и пластичность, что вызывается пережогом - сильным меж-кристаллитным окислением, а иногда и частичным оплавлением примесеи на границе зерен. Если первый вид брака можно исправить повторной термообработкой заготовки, то пережог считают неисправимым браком, и такую заготовку отправляют на переплавку. Таким образом, наибольшую пластичность металлы имеют в интервале от температуры рекристаллизации до температуры плавления. Однако верхний предел должен быть ниже температуры окисления границ зерен. Важным параметром структуры в изделии, полученном деформированием при температуре выше темпера-

туры рекристаллизации, является размер зерна, который сильно влияет на механические свойства изделий. Зависимость размера зерна в металлах после деформации с последующей рекристаллизацией, с одной стороны, от температуры, а с другой, - от степени деформации обычно представляется объемными диаграммами рекристаллизации (рис. 2.7), которые строят по результатам специально проводимых экспериментов. Эти диаграммы характерны для каждого металла и сплава и используются для выбора температурного режима деформации.

Б, МПа

Б, МПа

Рис. 2.6. Зависимость истинного напряжения 5 от истинной деформации е (цифры на кривых - скорости деформации, с -1): а - армко-железо, 700 °С;

6 - сталь с 0,25% С

Неравномерность деформации. Основными причинами, вызывающими неравномерное распределение напряжений и деформаций в обрабатываемом теле, считают неоднородность физических свойств обрабатываемого материала, контактное трение, форму заготовки и рабочего инструмента.

В условиях неравномерной деформации отдельные элементы тела получают различное изменение размеров. Поскольку обрабатываемое тело принимается сплошной средой, то те участки, которые получают большую деформацию, оказывают определенное воздействие на участки с меньшей деформацией и наоборот. В результате этого в теле возникают взаимно уравновешенные дополнительные напряжения, которые не определяются схемой напряженного состояния, вызываемого непосредственно воздействием внешних сил. Дополнительные напряжения могут при определенных

условиях обработки изменять схему напряженного состояния деформируемого тела. Особенно опасным является то, что в некоторых участках тела появляются растягивающие напряжения, что может привести к разрушению заготовки, хотя при этом общая схема напряженного состояния выражается благоприятной для проявления пластичности схемой всестороннего сжатия.


Рис. 2.7.

Дополнительные напряжения, которые взаимно уравновешиваются в объеме деформируемого тела (заготовки), можно разделить на три вида: напряжения первого рода (зональные), уравновешивающиеся между отдельными зонами или частями заготовки; напряжения второго рода, уравновешивающиеся между отдельными зернами заготовки; напряжения третьего рода, уравновешивающиеся в одном зерне. Примером неравномерности деформации может служить бочкообразование при осадке, возникающее в результате трения между инструментом и образцом.

Скорость деформации. В обработке металлов давлением различают две скорости: скорость деформирования или скорость перемещения рабочего органа машины (бабы молота, ползуна пресса и т. д.) и скорость деформации со или изменение степени деформации г в единицу времени, которую можно рассчитать по следующей формуле:

При этом в традиционных видах обработки металлов давлением диапазон скоростей деформации изменяется в интервале от 10 1 до 10 5 с" . Этой величиной удобнее описывать влияние скоростных условий деформации на пластичность, так как она не зависит от размеров обрабатываемой заготовки. В связи с этим можно корректно сравнивать разные процессы обработки металлов давлением, в которых возможно деформирование заготовок массой, составляющей несколько граммов, и, например, многотонных слитков. В первом приближении, чем больше скорость деформации, тем ниже пластичность. Однако при этом следует учитывать разогрев металла из-за тепла, выделяемого при деформации. Причем интенсивность разогрева тем выше, чем выше скорость деформации. Поэтому при холодной обработке малые скорости деформации слабо влияют на пластичность. Высокие скорости обеспечивают нагрев деформируемого тела, что способствует развитию диффузионных процессов и, следовательно, некоторому восстановлению пластичности металла.

При горячей обработке скорость деформации слабее влияет на пластичность, чем при холодной, так как на упрочнение из-за действия деформации накладывается действие высокой температуры, способствующей протеканию процессов разупрочнения за счет ускорения диффузионной подвижности атомов.

?= Нлр.*100%

Рис. 2.8. Зависимость механических свойств алюминиевого сплава Д1 от степени обжатия при холодной прокатке

Степень деформации. Обычно под наклепом принято понимать упрочнение при обработке давлением.

В более широком понимании наклеп - это совокупность структурных изменений и связанных с ними изменений свойств при пластической деформации. При холодной обработке давлением с увеличением степени деформации показатели сопротивления деформированию (временное сопротивление разрыву, предел текучести и твердость) возрастают, а показатели пластичности (относительное удлинение и сужение) падают (рис. 2.8). При деформировании металла со степенью деформации более 50-70 % временное сопротивление и твердость обычно увеличиваются в полтора-два, а иногда и в три раза в зависимости от природы металла и вида обработки давлением. Небольшие деформации (до Ю %), как правило, значительно сильнее влияют на предел текучести, чем на временное сопротивление разрыву. При больших степенях деформации у ряда сплавов предел текучести может возрасти в 5-8 раз и более.

Относительное удлинение резко уменьшается уже при сравнительно небольших деформациях. Сильная деформация, сопровождающаяся увеличением временного сопротивления и твердости в 1,5-2 раза, способна снизить относительное удлинение в 10-20, а иногда и в 30-40 раз и более.

Возрастание показателей сопротивления деформированию и снижение показателей пластичности с увеличением степени предварительной холодной деформации происходит в результате повышения плотности дислокаций. В наклепанном металле из-за повышенной плотности дислокаций затруднено скольжение уже имеющихся, а также возникновение (генерирование) и скольжение «новых» дислокаций.

Горячая обработка влияет на пластичность слабее, так как при повышении температуры активизируются диффузионные процессы, сопровождающиеся возвратом или рекристаллизацией, которые приводят к частичному или полному восстановлению пластичности.

Режим термической обработки. Чтобы получить конкретное изделие обработкой давлением требуется продеформировать заготовку на определенную степень деформации. Бывают случаи, когда достижение такой степени деформации за одну операцию (один проход при прокатке, одна операция вытяжки при листовой штамповке и т. д.) трудноосуществимо или невозможно. Поэтому технологический процесс разбивают на несколько операций, например, делают несколько переходов при листовой штамповке или несколько проходов при прокатке и т. д. Для частичного или полного восстановления пластичности после операции обработки давлением используют разные виды промежуточной термообработки. Для сталей это может быть отжиг: дорекристаллизационный или рекристалли-зационный. Для некоторых алюминиевых деформируемых сплавов можно использовать закалку. Вид термообработки и ее режим выбирают в зависимости от природы сплава, степени деформации, температуры деформации и т. д.


1. Химический состав
Наибольшей пластичностью обладают чистые металлы, наименьшей - химические соединения (больше сопротивление движению дислокаций).
Легирующие добавки Cr, Ni, W, Co, Mo - увеличивают пластичность; С, Si - снижают пластичность.
2. Микро-, макроструктура
С уменьшением величины зерна пластичность увеличивается (сверхпластичность). Разнородность зерен снижает пластичность.
3. Фазовый состав
Наибольшей пластичностью обладает металл однородного строения. Разные фазы, имеющие некогерентные решетки, затрудняют движение дислокаций и понижают пластичность.
Кроме того, они деформируются по-разному, что способствует образованию трещин.


Снижение пластичности при температуре выше 800°C связано с образованием второй фазы - остаточного феррита. Повышение пластичности при температурах выше 1000°С свидетельствует о резком снижении сопротивления металла деформации.
4. Скорость деформации
Следует различать скорость перемещения инструмента или скорость деформирования (V, м/с) и скорость деформации - изменение степени деформации в единицу зремени (u или ε, с-1),

где L - базовая длина образца, подвергнутого растяжению; Δl - абсолютное удлинение образца Δl=l-L; t - время; V - скорость перемещения инструмента; Н, h - высота тела соответственно до и после деформации; Ah - абсолютное обжатие Δh = H-h; R - радиус рабочих прокатных валков.
С увеличением скорости деформации пластичность снижается , так как не успевает переместиться нужное число дислокаций.
Увеличение пластичности при высоких скоростях деформации объясняется повышением температуры металла.
5. Окружающая среда. Некоторые поверхностно активные вещества повышают пластичность металла (олеиновая кислота) - облегчают пластический сдвиг, другие - способствуют хрупкому разрушению (керосин).
Таким образом, необходимо уделять должное внимание смазкам.


Прокатка в вакууме или в среде инертных газов редкоземельных элементов (Nb, Mo, Te) не позволяет образовываться окисной пленке, которая является очень хрупкой. При прокатке в вакууме газ диффундирует наружу и металл становится пластичным. В США построены цеха с защитной атмосферой. В г. Чирчик (Таджикистан) на металлургическом заводе работает прокатный стан с герметизированными валковыми узлами, в которых создан вакуум.
6. Дробность деформации
Увеличение дробности деформации приводит к повышению пластичности легированных марок стали.


Прокатка на планетарном стане, благодаря высокой дробности деформации, позволяет получить 98% степени деформации. Дробная деформация способствует уменьшению неравномерности структуры металла, облегчает поворот зерен. При повторном нагружении происходит снижение остаточных напряжений между зерном и пограничными зонами,
7. Механическая схема деформации
Наиболее благоприятной схемой пластической деформации является схема трехстороннего неравномерного сжатия. При прочих равных условиях уменьшение растягивающего напряжения благотворно влияет на пластические свойства металла.
При переходе от деформации по схеме одноосного растяжения к деформации по схеме трехстороннего сжатия теоретически возможно увеличение пластичности металла в 2,5 раза.
В классических опытах Кармана по прессованию мрамора и песчаника была получена величина степени деформации мрамора 68% без разрушения при обработке высоким гидростатическим давлением.
Гидростатическое давление


где σ1, σ2, σ3 - главные напряжения сжатия.
Пластическая деформация возникает за счет разности главных напряжений σ1 ~ σ3 = σт.
При прокатке хрупких литых сплавов для снижения растягивающих напряжений на кромках применяют так называемую «рубашку» (перед прокаткой заготовку заворачивают в оболочку из высоко пластичного металла). При этом растягивающие напряжения возникают в оболочке, а деформируемый металл испытывает сжимающие напряжения, предотвращающие трещинообразование.


Перспективным направлением является применение гидроэкструзии - создания всестороннего неравномерного сжимающего давления в деформируемом металле за счет жидкости (будет рассмотрено позже).
В реальных процессах всегда имеется неравномерность деформации (между зернами, между отдельными локальными участками), которая вызывает неравномерность деформации.
8. Масштабный фактор
Чем больше объем тела, тем ниже его пластические свойства при прочих равных условиях - следует учитывать при разработке процессов ОМД и при проектировании оборудования.

Имя:*
E-Mail:
Комментарий:

Добавить

05.04.2019

Виноград относится к ягодам с коротким сроком хранения. Даже в холодильнике он очень быстро становится вялым, теряет нормальный вид. Можно, конечно, заморозить его в...

05.04.2019

Правильно подобрать и установить подходящий кондиционер или сплит-систему поможет опытный специалист компании, которая предоставляет услуги по монтажу, ремонту и...

05.04.2019

Газовый котёл является оборудование, с его помощью происходит получение тепловой энергии, которая требуется для нормального отопления комнаты. Подобные агрегаты нередко...

05.04.2019

На территории Ташкентского металлургического предприятия начали привозить главное технологичное оснащение. В качестве поставщика выступила Группа предприятий «МетПром» в...

05.04.2019

С первого дня возникновения залоговых кредитов у заёмщиков появилась возможность брать значительные денежные суммы на лучших условиях, нежели в случае оформления...

05.04.2019

На сегодняшний день любая компания, работающая в химической отрасли, задействует в оде осуществления разнообразных процедур особое оснащение, где реализуются различные...

05.04.2019

Известная корпорация из Канады First Quantum Minerals, которая зимой текущего года передала в использование рудник по добыче медного сырья Cobre Panama на территории...

05.04.2019

ВВГнг-LS является силовым кабелем, обеспечивающим электрическое питание стационарных (в составе различных строений), а также мобильных (в условиях строительных площадок)...

Схема напряженного состояния. Напряженное состояние характеризуется схемой главных напряжений в малом объеме, выделенном в деформируемом теле. При всем многообразии условий обработки давлением в различных участках деформируемого тела могут возникнуть следующие схемы главных напряжений (нормально направленных напряжений, действующих во взаимно перпендикулярных плоскостях, на которых касательные напряжения равны нулю) (рис. 17.2): четыре объемных (а), три плоских (6) и два линейных (в). При каждом виде обработки давлением одна из представленных схем является преобладающей.

Прессование, прокатка, горячая объемная штамповка, ковка характеризуются всесторонним неравномерным сжатием. Эта схема нагружения наиболее благоприятна с точки зрения достижения максимальной степени пластической деформации.

При листовой штамповке и волочении реализуется схема двустороннего сжатия с растяжением.

В зависимости от действующих сил и соотношения их величин тело испытывает деформацию. Совокупность деформаций, возникающих по различным направлениям в пространстве, обычно называют деформированным состоянием.

Схема главных деформаций может дать представление о характере изменения структуры исходного материала, направлении вытянутости межзеренных границ и зерен. Структура приобретает строчечный характер. Границы зерен, содержащиеся в них загрязнения и неметаллические включения вытягиваются, образуя волокна (см. рис. 17.1). Эти изменения в деформированном металле могут быть обнаружены визуально после травления, так как имеют макроскопические размеры.

Металл после обработки давлением приобретает выраженную анизотропию свойств. При этом прочностные характеристики -

Рис. 17.2.

а - объемное; б - плоское; в - линейное временное сопротивление, предел текучести в различных направлениях - изменяются меньше, чем пластические - относительное удлинение, ударная вязкость и даже износостойкость.

Все перечисленные характеристики имеют большую величину в направлении волокон, чем поперек их. Полученную анизотропию свойств целесообразно учитывать, проектируя нагруженные детали, получаемые пластическим деформированием. В отдельных случаях учет этих особенностей позволяет существенно увеличить долговечность работы деталей, а также снизить их массу.

Влияние химического и фазового составов. Различные металлы и их сплавы имеют различные показатели пластичности и неодинаково сопротивляются пластическому деформированию. Однако всегда чистые металлы имеют большую пластичность, чем их твердые растворы, а однофазные структуры более пластичны, чем двухфазные, особенно если эти фазы отличаются по своим механическим характеристикам. Это же относится и к наличию в металлах труднорастворимых химических соединений.

Любые химические неоднородности, ликвации, растворенные газы существенно снижают способность металла к пластическому деформированию, особенно в области высоких температур.

Применительно к железоуглеродистым сплавам следует особенно выделить вредное влияние даже небольших количеств серы и фосфора.

Влияние температуры. При низких температурах пластичность металла уменьшается вследствие уменьшения тепловой подвижности атомов. С повышением температуры пластичность возрастает, а сопротивление деформированию уменьшается (рис. 17.3). Кривые изменения пластичности и прочности не всегда имеют монотонный характер; как правило, в интервале температур фазовых превращений могут происходить некоторое повышение прочностных и снижение пластических свойств металлов. Практически все металлы и сплавы в области температур, близких к температуре со-

Рис. 173. Влияние температуры нагрева стали на ее пластические свойства (е) и сопротивление пластическому деформированию (а в) лидуса, обнаруживают резкое падение пластических свойств - гак называемый температурный интервал хрупкости (ТИХ). В этом интервале пластические свойства близки к нулевым значениям. Объясняется это тем, что при этих температурах границы зерен и расположенные там межкристаллические прослойки, включающие легкоплавкие примеси, размягчаются или расплавляются и даже небольшая деформация приводит к их разрушению. Чем чище металл, тем меньше протяженность температурного интервала хрупкого состояния и тем ближе он к температуре равновесного солидуса.

Влияние скорости деформирования. Скорость деформирования материала при обработке давлением в значительной степени определяется скоростью перемещения деформирующего инструмента, хотя и не идентична ей. Правильнее было бы под скоростью деформации принимать величину относительного изменения размеров тела в единицу времени в направлении действующей силы, т.е.

где а ср - средняя скорость инструмента во время деформирования; h c р - средняя величина деформации.

Обычно средняя скорость деформации для различных процессов обработки давлением (табл. 17.1) изменяется в пределах КГ 12 - 10-V 1 .

Влияние скорости деформации на пластичность металла неоднозначно. При обработке давлением в горячем состоянии увеличение скорости деформирования понижает пластичность металла. Особенно это сказывается при обработке магниевых и медных сплавов, высоколегированных сталей. Менее заметно отрицательное влияние увеличения скорости деформации при обработке алюминиевых сплавов, низколегированных и углеродистых сталей.

При обработке давлением в холодном состоянии увеличение скорости деформации выше некоторых значений приводит к повы-

Таблица 17.1

Средние скорости деформации для различных видов оборудования обработки давлением

шению температуры обрабатываемого металла вследствие выделения значительной теплоты трения на плоскостях скольжения, которая не успевает распространиться в пространство. Повышение температуры приводит к разупрочнению и повышению пластических свойств. Этот эффект может быть очень значительным. Например, при обработке давлением с применением взрывных устройств удается получить в холодном металле весьма значительные пластические деформации.

Контрольные вопросы и задания

  • 1. Каков механизм пластического деформирования?
  • 2. Как влияет наличие дислокаций на сопротивление пластическому деформированию?
  • 3. Сравните свойства литого металла и металла, подвергнутого пластическому деформированию.
  • 4. При какой схеме нагружения можно получить максимальную величину пластической деформации?
  • 5. В какой области температур находится температурный интервал хрупкости, и чем объясняется снижение пластических свойств металла в этом интервале?

Пластичность – способность металла воспринимать остаточную деформацию без разрушения.

Иногда ошибочно отождествляют высокую пластичность и низкое сопротивление деформации. Пластичность и сопротивление деформации – это разные, не зависящие одна от другой характеристики твердых тел.

Способность пластически изменять форму присуща всем твердым телам, но у некоторых из них она ничтожна мала и проявляется только при деформации в особых условиях.

Факторы, влияющие на пластичность:

1. Природа вещества: чистые металлы обладают хорошей пластичностью, причем примеси, образующие с металлом твердые растворы снижают пластичность меньше, чем не растворяющиеся в нем. Особенно заметно снижают пластичность примеси, выпадающие при кристаллизации по границам зерен;

2. Наклеп: благодаря явлению самоупрочнения, сопровождающее наклеп, понижается пластичность металла;

3. Температура: повышение температуры металла приводит к увеличению пластичности. При очень низких температурах металл становится хрупким. Существуют температурные интервалы, различные для разных металлов. В углеродистой стали обнаруживается заметное снижение пластичности при температурах в , называемое синеломкостью. Это явление объясняется выделением мельчайших частиц карбидов по плоскостям скольжения.

При недостаточном содержании марганца в малоуглеродистой стали резкое падение пластичности при температуре в называют красноломкостью. Это явление возникает благодаря расплавлению эвтектики FeS, располагающейся по границам зерен.

К резкому падению пластических свойств приводит пережог – дефект, образующийся в результате длительной выдержки металла в зоне высоких температур, близких к температуре плавления, сопровождающийся окислением поверхности зерен, ослабляющее межзеренные связи. Пережог является неисправимым дефектом.

Понижение пластичности наблюдается также при перегреве – дефекте, образующимся в результате выдержки металла в зоне высоких температур, сопровождающимся чрезмерным укрупнением зерен в области фазовых превращений. Перегрев является устранимым дефектом и решается последующей термообработкой;

4. Скорость деформации: при горячей обработке металлов в связи с отставанием процесса рекристаллизации от наклепа повышение скорости понижает пластичность. При холодной обработке повышение скорости деформации может увеличивать пластичность за счет разогрева металла выделяющимся теплом;

5. Характер напряженного состояния: по существующим в теории обработки металлов давлением взглядам пластическая деформация происходит под воздействием сдвигающих напряжений, а хрупкое разрушение вызывается нормальными напряжениями растяжения. Влияние напряженного состояния на пластичность можно оценивать по величине гидростатического давления:

Если гидростатическое давление возрастает, то пластичность увеличивается, если же оно уменьшается, то пластичность уменьшается. Опыт показывает, что, изменяя напряженное состояние, можно все твердые тела считать пластичными или хрупкими, поэтому пластичность считают на свойством, а состоянием вещества;

 
Статьи по теме:
Ликёр Шеридан (Sheridans) Приготовить ликер шеридан
Ликер "Шериданс" известен во всем мире с 1994 года. Элитный алкоголь в оригинальной двойной бутылке произвел настоящий фурор. Двухцветный продукт, один из которых состоит из сливочного виски, а второй из кофейного, никого не оставляет равнодушным. Ликер S
Значение птицы при гадании
Петух в гадании на воске в большинстве случаев является благоприятным символом. Он свидетельствует о благополучии человека, который гадает, о гармонии и взаимопонимании в его семье и о доверительных взаимоотношениях со своей второй половинкой. Петух также
Рыба, тушенная в майонезе
Очень люблю жареную рыбку. Но хоть и получаю удовольствие от ее вкуса, все-таки есть ее только в жареном виде, как-то поднадоело. У меня возник естественный вопрос: "Как же еще можно приготовить рыбу?".В кулинарном искусстве я не сильна, поэтому за совета
Программа переселения из ветхого и аварийного жилья
Здравствуйте. Моя мама была зарегистрирована по адресу собственника жилья (сына и там зарегистрирован её внук). Они признаны разными семьями. Своего жилья она не имеет, признана малоимущей, имеет право как инвалид на дополнительную жилую площадь и...