Что обозначает кпд. Разные задачи на работу. Виды потерь в трансформаторе

Коэффициент полезного действия (КПД) - это характеристика результативности системы в отношении преобразования или передачи энергии, который определяется отношением полезно использованной энергии к суммарной энергии, полученной системой.

КПД - величина безразмерная, обычно ее выражают в процентах:

Коэффициент полезного действия (КПД) теплового двигателя определяется по формуле: , где A = Q1Q2. КПД теплового двигателя всегда меньше 1.

Цикл Карно - это обратимый круговой газовый процесс, который состоит из последовательно стоящих двух изотермических и двух адиабатных процессов, выполняемых с рабочим телом.

Круговой цикл, включающий в себя две изотермы и две адиабаты, соответствует максимальному КПД.

Французский инженер Сади Карно в 1824 г. вывел формулу максимального КПД идеального теплового двигателя, где рабочее тело - это идеальный газ, цикл которого состоял из двух изотерм и двух адиабат, т. е. цикл Карно. Цикл Карно - реальный рабочий цикл теплового двигателя, свершающего работу за счет теплоты, подводимой рабочему телу в изотермическом процессе.

Формула КПД цикла Карно, т. е. максимального КПД теплового двигателя имеет вид: , где T1 - абсолютная температура нагревателя, Т2 - абсолютная температура холодильника.

Тепловые двигатели - это конструкции, в которых тепловая энергия превращается в механическую.

Тепловые двигатели многообразны как по конструкции, так и по назначению. К ним относятся паровые машины, паровые турбины, двигатели внутреннего сгорания, реактивные двигатели.

Однако, несмотря на многообразие, в принципе действия различных тепловых двигателей есть общие черты. Основные компоненты каждого теплового двигателя:

  • нагреватель;
  • рабочее тело;
  • холодильник.

Нагреватель выделяет тепловую энергию, при этом нагревает рабочее тело, которое находится в рабочей камере двигателя. Рабочим телом может быть пар или газ.

Приняв количество теплоты, газ расширяется, т.к. его давление больше внешнего давления, и двигает поршень, производя положительную работу. При этом его давление падает, а объем увеличивается.

Если сжимать газ, проходя те же состояния, но в обратном направлении, то совершим ту же по абсолютному значению, но отрицательную работу. В итоге вся работа за цикл будет равна нулю.

Для того чтобы работа теплового двигателя была отлична от нуля, работа сжатия газа должна быть меньше работы расширения.

Чтобы работа сжатия стала меньше работы расширения, необходимо, чтобы процесс сжатия проходил при меньшей температуре, для этого рабочее тело нужно охладить, поэтому в конструкцию теплового двигателя входит холодильник. Холодильнику рабочее тело отдает при соприкосновении с ним количество теплоты.

Упоминание о коэффициенте полезного действия встречается во многих статьях. Рассмотрим, что же такое КПД. Взбираясь по веревке, человек превращает запас своей химической энергии в потенциальную , но мощность, с которой он высвобождает химическую энергию, оказывается гораздо больше, так как при этом выделяется еще значительное количество тепла. Количество израсходованной химической энергии можно установить, собрав выдыхаемый альпинистом воздух и измерив его объем и содержание углекислого газа.

Эти данные позволяют вычислить потребность в питании, что в свою очередь может характеризовать полную мощность, развиваемую при подъеме.

Для любой тепловой машины отношение полезной мощности на выходе к полной мощности на входе называется коэффициентом полезного действия (сокращенно к.п.д.).

Если вспомнить, что мощность – это скорость передачи энергии и определяется она отношением: Мощность = Переданная энергия / время, то к.п.д. можно определить и как отношение полезной части энергии на выходе к полной энергии на входе.

Альпинист, поднимающийся по веревке, по-видимому, растрачивает большую часть своей энергии в виде тепла. Если рассматривать альпиниста как машину для поднятия груза (самого себя) за счет энергии питания, то к.п.д. его, по-видимому, очень мал. Электромотор берет из электрической сети большую мощность, нежели отдает приводимому в движение механизму. Разница связана с выделяемым в моторе теплом.

К.п.д. большого электрического мотора может составлять до 90%. Электромотор - это искусный передатчик энергии. При малой нагрузке он потребляет из сети малую мощ-ность. Если же его нагрузить, то он, продолжая вращаться с той да скоростью, соответственно потребует большую мощность. Полезную мощность мотора можно измерить механически, а полную мощность найти из показания вольтметра и амперметра.

Животным свойственна большая способность к перегрузке, но, с другой стороны, они очень экономичны при малой нагрузке. В течение короткого времени лошадь можно заставить давать больше 1 л. с. Если та же лошадь работает каждый день, но с затратой до-лей лошадиной силы, то ей соответственно будет требоваться меньше корма.

Просто о сложном – Что такое КПД – коэффициент полезного действия

  • Галерея изображений, картинки, фотографии.
  • Что такое КПД – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Что такое КПД.
  • Ссылки на материалы и источники – Что такое КПД – коэффициент полезного действия.
    Похожие записи

Содержание:

Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.

Характеристики КПД в электродвигателях

Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.

Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 - полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической - Р = А/t, как отношение работы к единице времени.

Коэффициент полезного действия обязательно учитывается при выборе электродвигателя. Большое значение имеют потери КПД, связанные с реактивными токами, снижением мощности, нагревом двигателя и другими негативными факторами.

Превращение электрической энергии в механическую сопровождается постепенной потерей мощности. Потеря КПД чаще всего связана с выделением тепла, когда происходит нагрев электродвигателя в процессе работы. Причины потерь могут быть магнитными, электрическими и механическими, возникающими под действием силы трения. Поэтому в качестве примера лучше всего подходит ситуация, когда электрической энергии было потреблено на 1000 рублей, а полезной работы произведено всего лишь на 700-800 рублей. Таким образом, коэффициент полезного действия в данном случае составит 70-80%, а вся разница превращается в тепловую энергию, которая и нагревает двигатель.

Для охлаждения электродвигателей используются вентиляторы, прогоняющие воздух через специальные зазоры. В соответствии с установленными нормами, двигатели А-класса могут нагреваться до 85-90 0 С, В-класса - до 110 0 С. Если температура двигателя превышает установленные нормы, это свидетельствует о возможном скором .

В зависимости от нагрузки КПД электродвигателя может изменять свое значение:

  • Для холостого хода - 0;
  • При 25% нагрузке - 0,83;
  • При 50% нагрузке - 0,87;
  • При 75% нагрузке - 0,88;
  • При полной 100% нагрузке КПД составляет 0,87.

Одной из причин снижения КПД электродвигателя может стать асимметрия токов, когда на каждой из трех фаз появляется разное напряжение. Например, если в 1-й фазе имеется 410 В, во 2-й - 402 В, в 3-й - 288 В, то среднее значение напряжения составит (410+402+388)/3 = 400 В. Асимметрия напряжения будет иметь значение: 410 - 388 = 22 вольта. Таким образом, потери КПД по этой причине составят 22/400 х 100 = 5%.

Падение КПД и общие потери в электродвигателе

Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее - на ротор.

Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.

Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.

Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.

При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.

В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.

Ни одно выполняемое действие не проходит без потерь - они есть всегда. Полученный результат всегда меньше тех усилий, которые приходится затрачивать для его достижения. О том, насколько велики потери при выполнении работы, и свидетельствует коэффициент полезного действия (КПД).

Что же скрывается за этой аббревиатурой? По сути дела, это коэффициент эффективности механизма или показатель рационального использования энергии. Величина КПД не имеет каких-то единиц измерения, она выражается в процентах. Определяется этот коэффициент как отношение полезной работы устройства к затраченной на его функционирование. Для вычисления КПД формула расчета будет выглядеть таким образом:

КПД =100* (полезная выполненная работа/затраченная работа)

В различных устройствах для расчета такого соотношения используются разные значения. Для электрических двигателей КПД будет выглядеть как отношение совершаемой полезной работы к электрической энергии, полученной из сети. Для будет определяться как отношение полезной совершаемой работы к затраченному количеству теплоты.

Для определения КПД необходимо, чтобы все разные и работа выражались в одних единицах. Тогда возможно будет сравнивать любые объекты, например генераторы электроэнергии и биологические объекты, с точки зрения эффективности.

Как уже отмечалось, из-за неизбежных потерь при работе механизмов коэффициент полезного действия всегда меньше 1. Так, КПД тепловых станций достигает 90%, у двигателей внутреннего сгорания КПД меньше 30%, КПД электрического трансформатора составляет 98%. Понятие КПД может применяться как к механизму в целом, так и к его отдельным узлам. При общей оценке эффективности механизма в целом (его КПД) берется произведение КПД отдельных составных частей этого устройства.

Проблема эффективного использования топлива появилась не сегодня. При непрерывном росте стоимости энергоресурсов вопрос повышения КПД механизмов превращается из чисто теоретического в вопрос практический. Если КПД обычного автомобиля не превышает 30%, то 70% своих денег, расходуемых на заправку топливом авто, мы просто выбрасываем.

Рассмотрение эффективности работы ДВС (двигателя внутреннего сгорания) показывает, что потери происходят на всех этапах его работы. Так, только 75% поступающего топлива сгорает в цилиндрах мотора, а 25% выбрасывается в атмосферу. Из всего сгоревшего топлива только 30-35% выделившегося тепла расходуется на выполнение полезной работы, остальное тепло или теряется с выхлопными газами, или остается в системе охлаждения автомобиля. Из полученной мощности на полезную работу используется около 80%, остальная мощность тратится на преодоление сил трения и используется вспомогательными механизмами автомобиля.

Даже на таком простом примере анализ эффективности работы механизма позволяет определить направления, в которых должны проводиться работы для сокращения потерь. Так, одно из приоритетных направлений - обеспечение полного сгорания топлива. Достигается это дополнительным распылением топлива и повышением давления, поэтому так популярны становятся двигатели с непосредственным впрыском и турбонаддувом. Тепло, отводимое из двигателя, используется для подогрева топлива с целью лучшей его испаряемости, а механические потери уменьшаются за счет использования современных сортов

Здесь нами рассмотрено такое понятие, как описано, что он собой представляет и на что влияет. Рассмотрена на примере ДВС эффективность его работы и определены направления и пути повышения возможностей этого устройства, а, следовательно, и КПД.

Основные теоретические сведения

Механическая работа

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.

Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:

Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (F упр = kx ).

Мощность

Работа силы, совершаемая в единицу времени, называется мощностью . Мощность P (иногда обозначают буквой N ) – физическая величина, равная отношению работы A к промежутку времени t , в течение которого совершена эта работа:

По этой формуле рассчитывается средняя мощность , т.е. мощность обобщенно характеризующая процесс. Итак, работу можно выражать и через мощность: A = Pt (если конечно известна мощность и время совершения работы). Единица мощности называется ватт (Вт) или 1 джоуль за 1 секунду. Если движение равномерное, то:

По этой формуле мы можем рассчитать мгновенную мощность (мощность в данный момент времени), если вместо скорости подставим в формулу значение мгновенной скорости. Как узнать, какую мощность считать? Если в задаче спрашивают мощность в момент времени или в какой-то точке пространства, то считается мгновенная. Если спрашивают про мощность за какой-то промежуток времени или участок пути, то ищите среднюю мощность.

КПД – коэффициент полезного действия , равен отношению полезной работы к затраченной, либо же полезной мощности к затраченной:

Какая работа полезная, а какая затраченная определяется из условия конкретной задачи путем логического рассуждения. К примеру, если подъемный кран совершает работу по подъему груза на некоторую высоту, то полезной будет работа по поднятию груза (так как именно ради нее создан кран), а затраченной – работа, совершенная электродвигателем крана.

Итак, полезная и затраченная мощность не имеют строгого определения, и находятся логическим рассуждением. В каждой задаче мы сами должны определить, что в этой задаче было целью совершения работы (полезная работа или мощность), а что было механизмом или способом совершения всей работы (затраченная мощность или работа).

В общем случае КПД показывает, как эффективно механизм преобразует один вид энергии в другой. Если мощность со временем изменяется, то работу находят как площадь фигуры под графиком зависимости мощности от времени:

Кинетическая энергия

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела (энергией движения) :

То есть если автомобиль массой 2000 кг движется со скоростью 10 м/с, то он обладает кинетической энергией равной Е к = 100 кДж и способен совершить работу в 100 кДж. Эта энергия может превратиться в тепловую (при торможении автомобиля нагревается резина колес, дорога и тормозные диски) или может быть потрачена на деформацию автомобиля и тела, с которым автомобиль столкнулся (при аварии). При вычислении кинетической энергии не имеет значения куда движется автомобиль, так как энергия, как и работа, величина скалярная.

Тело обладает энергией, если способно совершить работу. Например, движущееся тело обладает кинетической энергией, т.е. энергией движения, и способно совершать работу по деформации тел или придания ускорения телам, с которыми произойдёт столкновение.

Физический смысл кинетической энергии: для того чтобы покоящееся тело массой m стало двигаться со скоростью v необходимо совершить работу равную полученному значению кинетической энергии. Если тело массой m движется со скоростью v , то для его остановки необходимо совершить работу равную его первоначальной кинетической энергии. При торможении кинетическая энергия в основном (кроме случаев соударения, когда энергия идет на деформации) «забирается» силой трения.

Теорема о кинетической энергии: работа равнодействующей силы равна изменению кинетической энергии тела:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Применять данную теорему удобно в задачах на разгон и торможение тела.

Потенциальная энергия

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями (так называемые консервативные силы ). Работа таких сил на замкнутой траектории равна нулю. Таким свойством обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести Земли рассчитывается по формуле:

Физический смысл потенциальной энергии тела: потенциальная энергия равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень (h – расстояние от центра тяжести тела до нулевого уровня). Если тело обладает потенциальной энергией, значит оно способно совершить работу при падении этого тела с высоты h до нулевого уровня. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Часто в задачах на энергию приходится находить работу по поднятию (переворачиванию, доставанию из ямы) тела. Во всех этих случаях нужно рассматривать перемещение не самого тела, а только его центра тяжести.

Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора начала координат оси OY. В каждой задаче нулевой уровень выбирается из соображения удобства. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Потенциальная энергия растянутой пружины рассчитывается по формуле:

где: k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Растяжение или сжатие х надо рассчитывать от недеформированного состояния тела.

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией. Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком (так как сила упругости всегда направлена против деформации тела):

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Работа силы трения зависит от пройденного пути (такой вид сил, чья работа зависит от траектории и пройденного пути называется: диссипативные силы ). Понятие потенциальной энергии для силы трения вводить нельзя.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой (формула уже приведена выше).

КПД можно рассчитывать как через работу, так и через мощность. Полезная и затраченная работа (мощность) всегда определяются путем простых логических рассуждений.

В электрических двигателях КПД – отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника. В тепловых двигателях – отношение полезной механической работы к затрачиваемому количеству теплоты. В электрических трансформаторах – отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т.д.

Из–за неизбежных потерь энергии на трение, на нагревание окружающих тел и т.п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД характеризует как эффективно работает машина или механизм. КПД тепловых электростанций достигает 35–40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением – 40–50%, динамомашин и генераторов большой мощности – 95%, трансформаторов – 98%.

Задачу, в которой нужно найти КПД или он известен, надо начать с логического рассуждения – какая работа является полезной, а какая затраченной.

Закон сохранения механической энергии

Полной механической энергией называется сумма кинетической энергии (т.е. энергии движения) и потенциальной (т.е. энергии взаимодействия тел силами тяготения и упругости):

Если механическая энергия не переходит в другие формы, например, во внутреннюю (тепловую) энергию, то сумма кинетической и потенциальной энергии остаётся неизменной. Если же механическая энергия переходит в тепловую, то изменение механической энергии равно работе силы трения или потерям энергии, или количеству выделившегося тепла и так далее, другими словами изменение полной механической энергии равно работе внешних сил:

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему (т.е. такую в которой не действует внешних сил, и их работа соответственно равна нолю) и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной:

Это утверждение выражает закон сохранения энергии (ЗСЭ) в механических процессах . Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой силами упругости и тяготения. Во всех задачах на закон сохранения энергии всегда будет как минимум два состояния системы тел. Закон гласит, что суммарная энергия первого состояния будет равна суммарной энергии второго состояния.

Алгоритм решения задач на закон сохранения энергии:

  1. Найти точки начального и конечного положения тела.
  2. Записать какой или какими энергиями обладает тело в данных точках.
  3. Приравнять начальную и конечную энергию тела.
  4. Добавить другие необходимые уравнения из предыдущих тем по физике.
  5. Решить полученное уравнение или систему уравнений математическими методами.

Важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими силами действуют силы трения или силы сопротивления среды. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание). Таким образом энергия в целом (т.е. не только механическая) в любом случае сохраняется.

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.

Разные задачи на работу

Если в задаче требуется найти механическую работу, то сначала выберите способ её нахождения:

  1. Работу можно найти по формуле: A = FS ∙cosα . Найдите силу, совершающую работу, и величину перемещения тела под действием этой силы в выбранной системе отсчёта. Обратите внимание, что угол должен быть выбран между векторами силы и перемещения.
  2. Работу внешней силы можно найти, как разность механической энергии в конечной и начальной ситуациях. Механическая энергия равна сумме кинетической и потенциальной энергий тела.
  3. Работу по подъёму тела с постоянной скоростью можно найти по формуле: A = mgh , где h – высота, на которую поднимается центр тяжести тела .
  4. Работу можно найти как произведение мощности на время, т.е. по формуле: A = Pt .
  5. Работу можно найти, как площадь фигуры под графиком зависимости силы от перемещения или мощности от времени.

Закон сохранения энергии и динамика вращательного движения

Задачи этой темы являются достаточно сложными математически, но при знании подхода решаются по совершенно стандартному алгоритму. Во всех задачах Вам придется рассматривать вращение тела в вертикальной плоскости. Решение будет сводиться к следующей последовательности действий:

  1. Надо определить интересующую Вас точку (ту точку, в которой необходимо определить скорость тела, силу натяжения нити, вес и так далее).
  2. Записать в этой точке второй закон Ньютона, учитывая, что тело вращается, то есть у него есть центростремительное ускорение.
  3. Записать закон сохранения механической энергии так, чтобы в нем присутствовала скорость тела в той самой интересной точке, а также характеристики состояния тела в каком-нибудь состоянии про которое что-то известно.
  4. В зависимости от условия выразить скорость в квадрате из одного уравнения и подставить в другое.
  5. Провести остальные необходимые математические операции для получения окончательного результата.

При решении задач надо помнить, что:

  • Условие прохождения верхней точки при вращении на нити с минимальной скоростью – сила реакции опоры N в верхней точке равна 0. Такое же условие выполняется при прохождении верхней точки мертвой петли.
  • При вращении на стержне условие прохождения всей окружности: минимальная скорость в верхней точке равна 0.
  • Условие отрыва тела от поверхности сферы – сила реакции опоры в точке отрыва равна нулю.

Неупругие соударения

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание). Для описания любых ударов Вам нужно записать и закон сохранения импульса, и закон сохранения механической энергии с учетом выделяющейся теплоты (предварительно крайне желательно сделать рисунок).

Абсолютно упругий удар

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

Частным случаем нецентрального упругого удара может служить соударения двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. В этом случае векторы скоростей шаров после упругого соударения всегда направлены перпендикулярно друг к другу.

Законы сохранения. Сложные задачи

Несколько тел

В некоторых задачах на закон сохранения энергии тросы с помощью которых перемещаются некие объекты могут иметь массу (т.е. не быть невесомыми, как Вы могли уже привыкнуть). В этом случае работу по перемещению таких тросов (а именно их центров тяжести) также нужно учитывать.

Если два тела, соединённые невесомым стержнем, вращаются в вертикальной плоскости, то:

  1. выбирают нулевой уровень для расчёта потенциальной энергии, например на уровне оси вращения или на уровне самой нижней точки нахождения одного из грузов и обязательно делают чертёж;
  2. записывают закон сохранения механической энергии, в котором в левой части записывают сумму кинетической и потенциальной энергии обоих тел в начальной ситуации, а в правой части записывают сумму кинетической и потенциальной энергии обоих тел в конечной ситуации;
  3. учитывают, что угловые скорости тел одинаковы, тогда линейные скорости тел пропорциональны радиусам вращения;
  4. при необходимости записывают второй закон Ньютона для каждого из тел в отдельности.

Разрыв снаряда

В случае разрыва снаряда выделяется энергия взрывчатых веществ. Чтобы найти эту энергию надо от суммы механических энергий осколков после взрыва отнять механическую энергию снаряда до взрыва. Также будем использовать закон сохранения импульса, записанный, в виде теоремы косинусов (векторный метод) или в виде проекций на выбранные оси.

Столкновения с тяжёлой плитой

Пусть навстречу тяжёлой плите, которая движется со скоростью v , движется лёгкий шарик массой m со скоростью u н. Так как импульс шарика много меньше импульса плиты, то после удара скорость плиты не изменится, и она будет продолжать движение с той же скоростью и в том же направлении. В результате упругого удара, шарик отлетит от плиты. Здесь важно понять, что не поменяется скорость шарика относительно плиты . В таком случае, для конечной скорости шарика получим:

Таким образом, скорость шарика после удара увеличивается на удвоенную скорость стены. Аналогичное рассуждение для случая, когда до удара шарик и плита двигались в одном направлении, приводит к результату согласно которому скорость шарика уменьшается на удвоенную скорость стены:

По физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

 
Статьи по теме:
Значение птицы при гадании
Петух в гадании на воске в большинстве случаев является благоприятным символом. Он свидетельствует о благополучии человека, который гадает, о гармонии и взаимопонимании в его семье и о доверительных взаимоотношениях со своей второй половинкой. Петух также
Рыба, тушенная в майонезе
Очень люблю жареную рыбку. Но хоть и получаю удовольствие от ее вкуса, все-таки есть ее только в жареном виде, как-то поднадоело. У меня возник естественный вопрос: "Как же еще можно приготовить рыбу?".В кулинарном искусстве я не сильна, поэтому за совета
Программа переселения из ветхого и аварийного жилья
Здравствуйте. Моя мама была зарегистрирована по адресу собственника жилья (сына и там зарегистрирован её внук). Они признаны разными семьями. Своего жилья она не имеет, признана малоимущей, имеет право как инвалид на дополнительную жилую площадь и...
Об утверждении требований к формату документов, предоставляемых в электронной форме для получения государственной услуги по государственной экспертизе проектной документации, ре
* Данный материал старше двух лет. Вы можете уточнить у автора степень его актуальности.1. Для проведения государственной экспертизы одновременно проектной документации и результатов инженерных изысканий, выполненных для подготовки такой проектной докуме